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ABSTRACT

Nicholas A. Battista: The Fluid Dynamics of Heart Development: The
effect of morphology on flow at several stages

(Under the direction of Laura A. Miller)

Proper cardiogenesis requires a delicate balance between genetic and environmental (epigenetic)

signals, and mechanical forces. While many cellular biologists and geneticists have extensively

studied heart morphogenesis using various experimental techniques, only a few scientists have begun

using mathematical modeling as a tool for studying cardiogenic events. Hemodynamic processes,

such as vortex formation, are important in the generation of shear at the endothelial surface layer

and strains at the epithelial layer, which aid in proper morphology and functionality. The purpose

of this thesis is to study the underlying fluid dynamics in various stages on heart development, in

particular, the morphogenic stages when the heart is a linear heart tube as well as during the onset

of ventricular trabeculation.

Previous mathematical models of the linear heart tube stage have focused on mechanisms of

valveless pumping, whether dynamic suction pumping (impedance pumping) or peristalsis; however,

they all have neglected hematocrit. The impact of blood cells was examined by fluid-structure

interaction simulations, via the immersed boundary method. Moreover, electrophysiology models were

incorporated into an immersed boundary framework, and bifurcations within the morphospace were

studied that give rise to a spectrum of pumping regimes, with peristaltic-like waves of contraction and

impedance pumping at the extremes. Lastly, effects of resonant pumping, damping, and boundary

inertial effects (added mass) were studied for dynamic suction pumping.

The other stage of heart development considered here is during the onset of ventricular tra-

beculation. This occurs after the heart has undergone the cardiac looping stage and now is a

multi-chambered pumping system with primitive endocardial cushions, which act as precursors to

valve leaflets. Trabeculation introduces complex morphology onto the inner lining of the endocardium

in the ventricle. This transition of a smooth endocardium to one with complex geometry, may have
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significant effect on the intracardial fluid dynamics and stress distribution within emrbyonic hearts.

Previous studies have not included these geometric perturbations along the ventricular endocardium.

The role of trabeculae on intracardial (and intertrabecular) flows was studied using two different

mathematical models implemented within an immersed boundary framework. It is shown that the

trabecular geometry and number density have a significant effect on such flows.

Furthermore this thesis also focused attention to the creation of software for scientists and

engineers to perform fluid-structure interaction simulations at an accelerated rate, in user-friendly

environments for beginner programmers, e.g., MATLAB or Python 3.5. The software, IB2d, performs

fully coupled fluid-structure interaction problems using Charles Peskin’s immersed boundary method.

IB2d is capable of running a vast range of biomechanics models and contains multiple options for

constructing material properties of the fiber structure, advection-diffusion of a chemical gradient,

muscle mechanics models, Boussinesq approximations, and artificial forcing to drive boundaries with

a preferred motion. The software currently contains over 50 examples, ranging from rubber-bands

oscillating to flow past a cylinder to a simple aneurysm model to falling spheres in a chemical gradient

to jellyfish locomotion to a heart tube pumping coupled with electrophysiology, muscle, and calcium

dynamics models.
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2.17 Schematic diagram of dynamic suction pumping adapted from Santhanakrishnan et al.
2011 [15]. (A) Illustrates the tube at initially at rest, while (B) shows the asymmetric
location of a single actuation point undergoing contraction. (C) That contraction creates
a bidirectional wave traveling down the tube and in (D) one side of that wave reflects
off the left end of the tube, since that end is closer to the actuation point. In (E) both
the reflected wave and last portion of the initial bidirectional wave are traveling in the
same direction. Finally in (F) there is reflection of that wave, while presumably another
contraction on of the actuation will occur. . . . . . . . . . . . . . . . . . . . . . . . . . 29
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waves from the actuating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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Hickerson et al. 2005 [17, 18]. (b) Illustrates the flow rate dependence on the pinching
occlusion, in an almost linear relationship. As occlusion increase, as does flow rate. In
(c) they explore flow rate’s dependence on duty cycle % and see good agreement with
experimental work done by Hickerson et al. 2005. [17, 18] . . . . . . . . . . . . . . . . . 31

2.20 Plot adapted from [16] illustrating the non-linear relationship between flow rate and
frequency for dynamic suction pumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.21 Geometry of the linear heart tube geometry. In (a), the tubular geometry with endocardial
cushions is shown in its resting state, while (b) illustrates the difference between the
deformation geometry (dashed lines) and rest state (solid lines). As a wave passes by, the
cushions thicken and deform. Figure adapted from Taber et al. 2007 [19]. . . . . . . . . 32
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adapted from [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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from [20, 21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.24 Simulation results illustrating average velocities for peristalsis and dynamic suction
pumping as a function of Womersley number, while showing effects of varying tube
diameter in each case. (A) Results for peristalsis, while (B) illustrates the results for
dynamic suction pumping. For Wo in the biologically relevant range, Wo ≈ 0.1, only
peristalsis initiates significant flow, with velocities in the order of ∼ 0.01cm/s, where
as dynamic suction pumping at the same scale gives velocities at least two orders of
magnitude smaller. Figure adapted from [20]. . . . . . . . . . . . . . . . . . . . . . . . . 35

2.25 Geometry of the flexible region of the racetrack. The springs depict muscles that generate
the contraction, once the action potential signal propagates to its location. The muscle
then contracts according to Felectro. Figure adapted from [22]. . . . . . . . . . . . . . . . 35

2.26 A comparison of the dimensionless spatially-averaged flow velocities measured across the
cross-section of the top of the tube for dimensionless time. The solid line represents the
neuro-mechanical pump, the dashed line is peristalstic pumping, and the dotted line is
impedance pumping. Figure adapted from [22]. . . . . . . . . . . . . . . . . . . . . . . . 36
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2.27 A comparison of the dimensionless spatially-averaged and temporally-averaged flow
velocities measured across the cross-section of the top of the tube for different Wo. The
solid line represents the neuro-mechanical pump, the dashed line is peristalstic pumping,
and the dotted line is impedance pumping. Figure adapted from [22]. . . . . . . . . . . . 37

2.28 Geometry of the racetrack with a shorter length flexible region and wider cross-section,
when compared to Figure 2.23. Figure adapted from Waldrop et al. 2015 [23]. . . . . . . 38

2.29 Data illustrating the non-linear behavior of these peristalsis assumptions. These figure
show speed vs. a parameter in the model. The figure on the left shows a non-linear
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diamonds, and Upeak as white, inverted triangles. The middle figure shows how speed
changes by varying the compression ratio (occlusion). The figure on the right shows the
fluid speed against the speed of the contraction wave. The dotted line gives the speed for
the constant, non-dimensional compressive wave speed. The figure was adapted from [23]. 38
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was adapted from [23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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2.32 Three-dimensional finite element model for cardiac looping without the SPL. The base
geometry with before mechanical loading is shown in (a), and in (b) the effects of
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Adapted from [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.33 A 2D model of a cross-sectional area of the heart tube with myocardial and cardiac jelly
layers fixed to the dorsal mesocardium is seen in (b),(b’), and (b”). Progressive time
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20 minutes post-SPL removal. In each case an immediate loss of rotation can be seen.
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2.34 (A) and (B) show experimental images for when the left OV is removed immediately after
removal and 12 hrs. later. Similarly (C) and (D) show analogous images, but for right
OV removal, as does (E) and (F) but for when both OV are removed. (G) and (H) show
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from Shi et al. 2014, [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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omphalomesenteric veins and LAIP and RAIP are the left and right sides of the anterior
intestinal portal. Figure adapted from Shi et al. 2014, [25]. . . . . . . . . . . . . . . . . 45
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2.43 (a) illustrates the use of transgenic Tg(fli1a:EGFP)y1 embryos for a clear visual delin-
eation of the endocardial layer for constructed the computational model and (b) shows
the use of Tg(gata1:dsRedsd2 transgenic zebrafish to visualize hematocrit for accurate
PIV and particle tracking. A denotes the atrium, V, the ventricle, and B, the bulbus
artereosus. In (c), a comparison between time averaged flow velocities through a cross
section of the AV canal is shown between experimental PIV data and the computationally
modeled data. Images and data taken from [28]. . . . . . . . . . . . . . . . . . . . . . . 52
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2.47 Shear stress and pressure profiles corresponding to simulations for Re = 4.2, (a), and
Re = 71.0, (b). It is clear that in the higher Re case, (b), the cushions undergo more
shear stress than in the lower Re case. However, in both cases the pressure exerted on
the cushions remains relatively static. Furthermore, the maximum shear is located at the
center of the cushion. Adapted from Biechler et al. 2010, [29]. . . . . . . . . . . . . . . . 55
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CHAPTER 1

Introduction

Hold on to your butts.

-John “Ray" Arnold (Jurassic Park)

Congenital heart disease (CHD) is the most common birth defect in humans and results from

deficient cardiac development. Roughly 1% of people are born with CHD in the United States, which

equates to more than 35, 000 babies being born annually with cardiovascular abnormalities [39, 40].

Unfortunately, many congenital heart defects show few signs and symptoms; and in some cases, they

are not diagnosed until later in childhood or even as an adult.

There is a wide range of heart defects; some are simple defects that show no mild symptoms,

while some are complex with severe, life-threatening symptoms. Congenital heart defects range

from abnormalities in the morphological structure of the heart itself, from holes in a heart chamber

to irregular, dysfunctional size, to defective valves separating adjacent chambers, to arteries and

veins, which carry blood to and from the heart, and other various other cardiomyopathies [41]. Each

of these deficiencies effect how oxygen, nutrients, and metabolic wastes are properly transported

throughout the body. Moreover since the heart is the first functioning organ in the embryo, any

defects in the it may have detrimental affects on the organogenesis of other bodily systems [42].

In some cases, children who were born with CHD do not require treatment, while others with

severe symptoms and complications may require treatment or surgery. A treatment for CHD depends

of the type and severity of the defect, as well as, the patients age, size, and general health [39].

Roughly 0.3% of all live births require either catheter-based or surgical intervention within their

first year of life [43]. Fortunately many people with CHD are able to survive to adulthood and live
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active, productive lives.

Cardiogenesis involves a dynamic interaction of genetic and environmental (epigenetic) factors. It

is a precise coordination of a multitude of processes, such as cellular proliferation, migration, differ-

entiation, and integrated morphogenetic interactions. Hence it is unfortunately susceptible to many

anomalies and pathologies, like CHD [44]. A vast array of cardiogenic research has focused on genetic

aspects, with unsurmountable success; however, experiments have also highlighted the underlying im-

portance of the hemodynamics governing proper morphogenesis of the heart [12]. Understanding the

interplay between the mechanical forces arising from blood flow and biological sensory and regulatory

networks may lead to invaluable insight about how cardiovascular defects arise and possible reme-

dies to irregularities and perturbations in cardiac morphogenesis [45, 46, 47, 48, 12, 49, 19, 26, 15, 50].

Embryogenesis involves a seemingly uncountable amount of biological processes; however, most

all can be grouped into three sub-groups [47, 48] - growth, remodeling, and morphogenesis. Clearly

these processes must be coupled in nature and, by definition, but is useful to describe them separately

since they each describe different culminations of embryogenic processes.

Growth can be described as the increase or decrease of volume in cardiovascular tissues. This

change in volume can arise from hyperplasia (adjustments in the number density of cells), hypertro-

phy (variations in cell geometry, i.e., size), or modifications in the amount of extracellular matrix.

During cardiogenesis, essentially all growth is due to hyperplasia, but interestingly enough after

birth, growth is attributed to hypertrophy. These changes in cell density, geometry, and amount of

extracellular matrix are thought to not only have global importance in cardiac growth, but have

profound regional effects via the introduction of stresses and forces that may be important to overall

heart function as well as cardiogenesis [48].

Remodeling of cellular types occurs tightly along side growth of the cardiovascular system. As

the heart develops from a primitive myocardial heart tube composed mostly of epithelial cells

to a multi-chambered valvular pumping system in vertebrates, cells from the initial myocardium

differentiate to the usual form of myocardium (muscle cells), where actin and myosin combine to
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form sacromeres, and along with myofibrils, to constitute a vast network of highly oriented muscle

cells in a mature heart [51].

Lastly morphogenesis characterizes the dramatic changes in organ morphology during embryogen-

esis. For example, in cardiogenesis, the heart undergoes dramatic changes in shape, not only to form

a mature heart, but also for utility and function. For example, in various animal models, it has been

documented that the embyronic heart begins pumping much before oxygen, nutrients, metabolic

waste transport are seemingly necessary in the circulatory system [52]. However, during the various

phases of heart morphogenesis, it is clear that a precise choreography of events (hemodynamics

and genetic-chemical-mechanical signaling) must take place, with no irregularities, for proper heart

development and function. Any slight perturbation in any of the complex cardiogenic phases could

lead to a morphological defect, of which could be detrimental to the embryo or potentially fatal in

an unspecified time after birth.

Thus far scientists have constructed extensive in vitro models to study the effect of hemody-

namic shear stress on endocardial cells to induce local epigenetic signaling changes [12, 35, 53].

It is well known that that mechanical forces have an important role for inducing changes within

biological regulatory networks and pathways within these endocardial cells; however, it is difficult to

extrapolate the information gained from an in vitro model to predict physiological situations in vivo,

due to limitations in imaging resolution and surgical technology [54]. Hence it could be fruitful to

create biological relevant and verified fluid-structure morphological models in developing a better

understanding of what role hemodynamic forces undertake in cardiogenesis.

By a continued focus on discovering and studying previously unidentified genes, epigenetic signals,

and biological regulatory networks as a whole, as well as an exciting opportunity to study the recent

spotlight, that is, the importance of hemodynamics and mechanical forces on cardiogenesis, may

all-together lead to a better understanding of the causes of CHD, i.e., which mutations and irregular

flow patterns may lead to morphological abnormalities and suppression of the cardiac conduction

system [51]. Integrating all these parameters could possibly advance medical technology in the

development of novel therapies for heart disease in children and adults, including the creation of
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artificial valves, vessels, and even whole hearts, or transplants, or even possible sophisticated in vivo

therapies when heart morphogenesis is actually taking place.

In this thesis we explore the role fluid dynamics performs in various phases of heart morphogenesis,

specifically focusing on the effects of hematocrit and trabeculation on the underlying hemodynamics.

In Chapter 2 we discuss vertebrate heart morphology and function in humans and our model organism,

zebrafish (Danio rario), and compare their respective morphogenic timelines and geometric differences

and conservation between the two. Furthermore we will discuss previous mathematical modeling

work that has been done in various stages of cardiogenesis. In Chapter 3 we introduce the governing

equations of fluid dynamics, e.g., the Navier-Stokes equations, and explain the numerical method we

use to solve our fluid-structure interaction models’ equations, e.g., the Immersed Boundary Method.

In Chapter 4, we discuss various pumping mechanisms in linear heart tubes. In Chapter 5, we inves-

tigate the role of trabeculation during morphogenesis and study their effect on intracardial fluid flows.
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CHAPTER 2

Cardiogenesis

Throw me the idol; I’ll throw you the whip!

- Satipo (Raiders of the Lost Ark)

In this chapter we will review the various phases of vertebrate heart development, from its humble

beginnings as a mere linear heart tube to its adult counterpart as a multi-chambered valvular system,

which pumps blood efficiently throughout the entire cardiovascular system. During cardiogenesis the

developing heart undergoes a series of complicated morphological changes that are thought to arise

from a balanced and well-coordinated interaction of hemodynamic forces, robust genetic regulatory

and signaling networks, and all the intracellular and intercellular processes that couple them.

For the remainder of the chapter, we will explore the various phases of heart morphology in

vertebrates, why mechanical forces are believed to have significant roles in proper cardiac development

through both previous experimental, as well as some mathematical modeling achievements, and why

we choose the zebrafish, Danio rerio, to be our model organism for studying cardiogenesis.

2.1 Heart Morphology

Heart morphology is seemingly well conserved throughout the vertebrate kingdom [35, 55, 56],

even though embryogenesis takes place on different time scales, i.e., humans are born roughly nine

months post fertilization, while zebrafish embryos hatch and begin swimming after approximately

five days post fertilization [12]. In both cases similar heart morphogenetic steps occur, but on widely

varied time-scales. While the process of heart formation in zebrafish only takes roughly five days

before the heart matures into a morphological form reminiscent of its adult counterpart [57], the

same process takes roughly two months in human cardiogenesis [10]. In this section we will discuss
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the various phases of cardiac morphogenesis in vertebrates, while also comparing time-scales of heart

development between zebrafish and humans.

Figure 2.1: A comparison of early developmental landmarks between different species. Chick embryo
stages are described according to the Hamburger-Hamilton (HH) scale, zebrafish stages are measured
in hpf (hours post fertilization), mouse stages are marked as postconception days (E), and human
stages are developmental days.

The heart begins to form as the precardiac mesoderm forms into a linear tube, which is only a

few cells thick and consists of three layers- a thin-layer of endocardium, a relatively thick gelatinous

middle layer of extracellular matrix, called cardiac jelly, and a thin outer layer of myocardium

[58, 59, 19]. Shortly after the heart-tube forms, the first heart beats occur. In humans this happens

at approximately between 22 and 23 days post fertiliation (dpf), while in zebrafish the formation of

the heart-tube and initiation of heart beat occurs within 19 hours post fertilization (hpf) and 22 hpf

respectively [60]. A comparison of early developmental landmarks for four different vertebrate species

is found in Figure 2.1, adapted from Furst [61]. Chick embryo stages are described according to the

Hamburger-Hamilton (HH) scale [62], zebrafish stages are measured in hours post fertilization (hpf),

mouse stages are marked as postconception days (E), and human stages are given by developmental

days.

All subsequent steps in heart morphogenesis may now be potentially affected by myocardial

function [53], hence if bradycardia or tachycardia occur, e.g., abnormal decreasing or increasing of

the heart rate, respectively, the result could be detrimental in the resulting organogenesis of the

heart or other organs. At this stage, a zebrafish’s heart rate is approximately 90 contractions per

minute shortly after circulation begins [56].

The linear heart tube contracts rhythmically to push blood via waves of contraction running
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down the tube, seemingly in a slow peristaltic manner [63, 64, 48, 60], inducing unidirectional flow in

the throughout the embryonic cardiovascular system. The wave of contraction can be seen running

from the venous to arterial end of the heart tube.

Some scientists claim that this wave of contraction is due to elastic, passive waves traveling down

along the endocardium [65], suggesting the embryonic heart pumps via dynamic suction pumping, i.e.,

impedance pumping. However, whether there is a well-coordinated active contractile wave traveling

down the myocardium (peristalsis) or a single point of actuation that initiates a bidirectional wave

that reflects causing a net flow induced by passive traveling waves along the endocardium (dynamic

suction pumping), it is clear that this wave of contraction induces flow within the embryonic heart.

Figure 2.2: Snapshots of the contractile wave propagating through the endothelium in the linear
tube of an embryonic zebrafish heart at 28 hpf. The contractile wave is outlined in blue. These
images are courtesy of Leigh Ann Samsa.

Initially blood is absent of erthrocytes, nutrients, and metabolic wastes (in zebrafish younger

than ∼ 24 hpf) ; however, the hemodynamic forces arising from the primitive embryonic blood are

seen to have significant roles in morphogenesis [12]. In zebrafish, within a few hours of the ini-

tiation of the first heart beat, blood cells are seen being transported around the cardiovascular system.

Throughout the linear heart tube stage, which lasts between days 22 and 23 post fertilization

in human embyros and between hours 19 to roughly 30 post fertilization in zebrafish, the heart

rate steadily increases. The increase in heart rate is coupled with an increase in cavity volume to

complement the ever increasing and demanding blood transport rates at this phase. As a result of

higher flow rates, higher pressures are necessary to propagate the higher quantities of blood, which

also aid in driving expansion and remodeling of the system [19, 60]. Thereby the heart undergoes

7



it’s first instance of asymmetry and begins the complicated cardiac looping stage. This occurs in

humans around 23 dpf [60] and in zebrafish around 30 hpf [56]. In parallel during this process,

the vascular network grows and expands to serve the metabolic needs of the rapidly developing embryo.

Figure 2.3: Snapshot taken of an embryonic zebrafish heart’s endothelium at 42 hpf illustrating
the looping process’ morphogenetic changes from a linear heart tube. Image courtesy of Leigh Ann
Samsa.

Once the heart-tube begins to loop to the embryo’s right side, the embryonic zebrafish heart is

pumping at approximately 140 beats per minute. The direction of the looping tubular heart is a

commonality among all of vertebrate heart morphology and evolution, beginning with cyclostomes

[56]. This must be a perfectly coordinated phase, as even the slightest perturbations in looping

morphology can lead to serious physiological defects [66]. During this phase, the once linear tube is

undergoes precise choreography of bending and twisting.

Even though looping is such a crucial phase in heart morphogenesis, our understanding of the

process remains relatively poorly understood [46, 67]. This is not to say that scientists have dismissed

studying this phase, on the contrary, it has received a great deal of focus and several hypothesis

have been proposed for the mechanisms that govern looping. Unfortunately, none of the proposed

mechanisms are consistent with the experimental data gained. It has been experimentally observed

that the dorsal mesocardium, which attaches the heart to the embryo, has a significant role in looping.
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Figure 2.4: Frontal view of the embryonic mouse heart during day 9 (approximate human age is
25 days) and cartoon schematic. When the heart tube elongates and begins to loop, blood flows
into the sinus venosus, then into the primitive atria, the ventricles and bulbus artereosus before
entering the visceral arch vessels. We note that mammalian hearts are four chambered (two atria
and two ventricles), while fish hearts are two chambered (one atria and one ventricle) [1]. SEM
images courtesy of Dr. Kathleen K. Sulik. Diagram redrawn from [2].

The dorsal mesocardium is a very stiff structure, and thereby because the heart tube is attached

longitudinally, as the linear heart tube undergoes bending and twisting, the dorsal mesocardium

must bend and twist in unison [68].

Therefore all of the proposed mechanisms for looping, describe an intricate relationship between

the heart tube, dorsal mesocardium, and physiological constraints on the dynamics. One candidate

presumes that when pressure rises in the heart tube, it causes the cardiac jelly to swell and expand

the cardiac tube. The heart tube is then forced to bend because of the stiff structure of the dorsal

mesocardium. Another possible mechanism has suggested that because the dorsal mesocardium

is initially under residual tension when it tears as the ventricle pulls away from the embryo, the

remnants of the dorsal mesocardium shortern and force the tubular heart to bend. Another proposal

hypothesizes that circumferential microfilaments contract and the endothelial cells undergo circum-

ferential shortening as well, forcing longitudinal extension of the tube, because of incompressibility

constraints. Then because the heart tube is attached along the stiff dorsal mesocardium, the dorsal

mesocardium restricts the expansion and forces the tube to bend [46, 48, 69]. Other hypothesis

suggest that looping occurs from forces arising from adjacent organs pushing against the tubular heart

[12]. Although physical models have shown that on their own, each of these proposed mechanisms

are limited in the amount of bending that can be induced [46, 70], it is possible that a combination

9



of these candidates along with other mechanical or bio-chemical processes contribute to looping.

During looping chamber septation also begins [64], demarcated by narrow rings of tissue at their

junction [56]. Furthermore chamber ballooning begins to occur when the cardiac jelly regresses in

the primitive ventricle so that ventricular outgrowth can proceed. A similar process takes place

in the atrial chamber. The secondary myocardium from the outer curvature of the primary heart

tube is responsible for initiating the ballooning phase, as it begins to expand and dilate to assist in

shaping the chambers [71, 72]. These primitive chambers resemble a simple balloon with a smooth

inner surface [55].

By around 48 hpf, the zebrafish heart has developed into a two-chambered pumping system,

separated by the atrioventriular canal. It performs at a heart rate of around 200− 215 beats per

minute, with flow velocities around 0.3 cm/s [57]. At this state the ventricle to bodyweight ratio is

approximately 11%. The heart is lined with endocardium, separated from the myocardium by a

layer of cardiac jelly in the atrium and bulbus artereosus. The myocardium is still only about one

cell thick in each segment of the heart, except the ventricle, which has 2-3 cell layers. There is still

no evidence of valve leaflets at this stage, although each component of the heart can be identified by

a constriction between the segments [59]. Instead the atrioventricular canal contains endocardial

cushions, which are the precursors to cardiac valve leaflets.

Also at this stage, the pumping mechanics in the zebrafish embryonic heart resemble that of its

adult counterpart. Even though, the heart is not geometrically scalable to its adult heart, as other

morphological changes in topology have yet to take place, the embryonic heart undergoes similar

pumping behavior. First the atria fills will embryonic blood, contracts, and blood is forced through

the atrioventricular canal and into the ventricle, where it expands to fill and quickly contracts to

push blood through the bulbus artereosus and out through the developing embryo. Each chamber

has begun to beat as a synchronous unit, inducing more pulsatile flow, rather than the previously

described peristaltic-like flow profile.

This pulsatile flow profile becomes more pronounced during the onset of compressible endocardial
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cushions, which form as mounds gelatinous tissue matrix that are secreted by cells in the myocardium

[29]. These cushions begin as constrictions near the ends of the heart tube and function as primitive

valves during late stages the linear heart tube, and early stages of cardiac looping, chamber formation,

and the multi-chambered pumping heart. As the heart loops, it becomes less efficient at preventing

retrogade flow, causing the need for some kind of valvular system, to which the cushions undertake.

When a wave of contraction passes the cushions, they appear to pinch off the lumen to prevent back-

flow, and hence are thought to be essential for proper cardiogenesis. Moreover, significant forward

blood flow and pulsatile pumping only become possible only when the endocardial cushions appear,

and hence it is speculated that pulsatile flow is required for normal development of the vascular system.

Figure 2.5: Images illustrating the development and morphology of endocardial cushions. (a)
shows a cartoon depiction of the zebrafish emrbyonic heart at 36 hpf of the pinching to create the
atrioventricular canal and endocardial cushion formation. (b) gives the associated in vivo image of
(a). (c) illustrates the zebrafish heart at 60 hpf with the endocardial cushions highlighted in green
with green arrows. (a) and (b) were adapted from [3] and (c) from [4].

An illustration of endocardial cushion development and morphology are shown in Figure 2.5,
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which was adapted from [3, 4]. (a) shows a cartoon depiction of the zebrafish emrbyonic heart at 36

hpf of the pinching to create the atrioventricular canal and endocardial cushion formation. (b) gives

the associated in vivo image of (a). (c) illustrates the zebrafish heart at 60 hpf with the endocardial

cushions highlighted in green with green arrows.

The endocardial cushions appear to have evolved as an elegant solution to aid in proper heart

morphogenesis. The endocardial cushions will not form without myocardial function and hence blood

flow [53]. Since the cushions help induce more unidirectional pulsatile flow, there is an increase in

both hemodynamic pressure, flow rates, mass flux, and hence cavity volume. This in turn benefits

the growing embryo, as it demands ever increasing flow of blood and nutrients. However, fully

developed valve leaflets would not be appropriate at this stage, as mature valves would obstruct

other morphogenetic processes, i.e., cardiac looping and it’s predecessors, due to their stiff nature as

being connective tissue [19]. Later these cushions will remodel into fully functional valvular leaflets [4].

Figure 2.6: Images from Liu et al. 2010 [5] and Samsa et al. 2016 [6], taken by utilizing two cardiomy-
ocyte specific lines, Tg(cmlc2:GFP) and Tg(cmlc2:ras-GFP), which express GFP or membrane-bound
GFP in all differentiated cardiomyocytes and confocal optical imaging of the ventricle, respectively.
(1) Shows the onset of trabeculation in the 72 hpf zebrafish heart. The arrow indicates the beginning
of a primitive trabeculae. Note that it is located directly across from the atrioventricular canal,
implicating that higher regions of mechanical forces undergo trabeculation first. (2) The continued
trabeculation process undergoing in the zebrafish heart at 80 hpf, where more trabeculae are present.
(3) Shows a similar image to (1) but using a different imaging method.

While the multi-chambered heart’s hemodynamics at this stage are mitigated by the endocardial

cushions, other morphological processes are occuring within the developing cardiovascular system,
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specifically to both assist and drive heart morphogenesis. Around 72 hpf in zebrafish, cardiomy-

ocytes proliferate and protrude into the lumen from specific locations along the ventricular outer

curvature, roughly opposite the atrioventricular canal. This is seen in Figure 2.6. These protrusions,

called trabeculae, appear to be an expression of three interrelated events- formation of endocardial

outgrowths that eventually invade the myocardium, development of large of intercellular regions

between myocytes, and a decrease in cardiac jelly thickness [7]. This process occurs roughly between

5 and 6 weeks in human embryogenesis [10].

Figure 2.7: (1) Endocardial cells are smooth and polygonal in shape before trabeculation occurs. (2)
During the onset of trabeculation, endocardial cells become elongated and become slightly more
depressed than surrounding endocardial cells. (3) Endocardial cells (E) invaginate the cardiac jelly
(CJ) and extend toward the myocardium (M). (4) A primitive trabeculae is formed (illustrated by
the white arrow) once the endocardial cells protrude into the myocardium. SEM images taken from
Icardo et al. 1987 [7].

Prior to trabeculation, the endocardial ventricular cells are smooth and polygonal in shape.

However, at the onset of trabeculation several endocardial cells become elongated, where a few

extend cellular projections. Moreover these cells appear slightly more depressed than the surrounding

endocardial cells. The depressions progressively become more deep and wide, where endocardial cells
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invaginate the cardiac jelly, and extend toward the basal surface of the myocardium. Eventually

myocardial cells separate due to the potent endocardial cell invasion, and definitive trabeculae are

formed. Hence trabeculae are composed of both a myocardial and endocardium component [7]. This

process can be seen in Figure 2.7.

Hemodynamic forces may contribute to the site selection for trabeculae, where the initial location

reflects a peak site of normal mechanical loading. Lumenal ridges continue to appear and propagate

along the outer curvature in a radial pattern and eventually mature into thick bundles around 96 hpf.

The thick bundles will detach from the ventricular wall and create elaborate networks within the

ventricle, and by about 4 dpf the inner surface of a zebrafish ventricle has an impressive trabeculated

morphology [55, 44].

The presence of trabeculae also lead to an increase in ventricular mass during the continued

process of chamber formation [58], and moreover ventricular wall and compact layer increased to

3−4 cellular layers thick [73]. Their structure, although initially may resemble finger-like projections,

quickly becomes more geometrically complex and appears as a sponge-like structure.

Now that the interior of the ventricle is no longer smooth and open, it is clear that the hemodynam-

ics within it will be drastically different. Trabeculae are believed to play various roles on blood flow,

such as to provide sufficient pumping function during growth, to allow for nutrition of the embryonic

myocardium before coronary vascularization, to separate blood currents in the pre-septated heart

[74], increase intramyocardial blood flow [53], and not enable the heart to have stagnated flow regions.

Furthermore trabeculae (as well as endocardial cushions) are themselves particularly sensitive

to changes in intracardiac hemodynamic shear stress [52]. This becomes crucial when considering

that trabeculae may help assist in mechanotransduction for biological signaling, which may still play

a vital role in heart morphogenesis at this stage. Another hypothesis is that trabeculation helps

regulate and distribute shear stress over the ventricular endocardium; however, some studies believe

that the presence of trabeculation develop a more uniform transmural stress distribution [53].
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Trabeculation is not confined to solely the ventricular chamber of the heart. Atrial trabeculation,

in fact, occurs along the luminal side of the atrial wall; however, this process occurs much later than

in the onset of trabeculation in the ventricle.

During the complex formation of trabeculation, endocardial cushions undergo a transformation

into valve leaflets. It is believed that both hemodynamic shear stress, genetic factors, and overall

myocardial function may help shape and regulate this development [53, 29]. The atrioventricular

cushions elongate, fuse, and thin into fibrous leaflets. These leaflets, once constructed, are excep-

tionally powerful mechanisms for preventing regurgitation of blood from the ventricle back into the

arterial chamber. By 102 hpf, the leaflets in the embryonic heart are similar to the adult [75]. Flow

rates are approximately 0.4 cm/s and the zebrafish heart beats at around 255 beats per minute [57].

Figure 2.8: Illustrating the exponential increase in cardiac output during development in avian
(chick) embryos, as seen from a variety of studies. Image modified from Kowalski et al. 2014 [8].

As the heart grows, the relative mass of the heart decreases with the increase in size and complex-

ity of the embryo. This relationship is seen among many vertebrate species where the heart becomes

a progressively smaller percent of the total mass [73]. Recall when embryogenesis first initiates, the

heart compromises a vast bulk of the overall mass. Furthermore throughout cardiogenesis, cardiac
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output increases exponentially, see Figure 2.8.

Figure 2.9: A summary of morphogenetic landmarks in zebrafish cardiogenesis. In (a), the linear
heart tube begins to develop around 19 hpf, (b) illustrates the continued development of a linear
heart tube from once being a cardiac disc and the zebrafish’s first heart beart around 22 hpf. Shortly
thereafter, within a few hours the presence of hemacrit is seen. At 28 hpf, (c), the linear heart tube
has settled into its final stage before undergoing cardiac looping around 36 hpf (d). As the heart loops,
the chamber begins to balloon, forming into their more mature shape. Also, the atrioventricular
canal develops and endocardial cushions form within that canal by 48 hpf, as depicted in (e). At this
stage, the now two-chambered heart begins to pump in a fashion reminiscent to its adult counterpart.
In (f), the first signs of ventricular trabeculation become apparent at approximately 72 hpf. Image
modified from Bakkers et. al. [9].

Figure 2.9, modified from [9], summarizes the morphogenetic landmark events in zebrafish

cardiogenesis discussed above. In (a), the linear heart tube begins to develop around 19 hpf, (b)

illustrates the continued development of a linear heart tube from once being a cardiac disc and

the zebrafish’s first heart beart around 22 hpf. Shortly thereafter, within a few hours the presence

of hemacrit is seen. At 28 hpf, (c), the linear heart tube has settled into its final stage before

undergoing cardiac looping around 36 hpf (d). As the heart loops, the chamber begins to balloon,

forming into their more mature shape. Meanwhile the atrioventricular canal develops and endocardial

cushions form within that canal by 48 hpf, as depicted in (e). At this stage, the now two-chambered

heart begins to pump in a fashion reminiscent to its adult counterpart. In (f), the first signs of

ventricular trabeculation become apparent at approximately 72 hpf. Moving forward trabeculation

becomes heavily pronounced. The corresponding stages of human heart development are shown in
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Figure 2.10, where similar morphogenetic stages occur but on different time-scales. Furthermore, the

adult zebrafish (fish) heart has fewer chambers than than that of a mature human (mammalian) heart.

Figure 2.10: A summary of morphogenetic landmarks of human heart morphogenesis, given in weeks.
Figure is adapted from [10].

After these stages the cardiovascular system continues to develop with the formation and re-

modeling of aortic arch arteries and other vascular components [76], the maturation of the cardiac

valvular system, progressing the endocardial cushions to valve leaflets, atrial trabeculation, and

overall systematic growth of the heart. This thesis, however, will focus on the former stages of heart

development, which were discussed above.

2.2 Experimental Studies on Mechanical Forces and Heart Morphogenesis

The notion that mechanical forces are essential for proper cardiogenesis is not a recent idea. It

was first proposed by Thoma in 1893 [77] and Chapman in 1918 [78] when they surgically dissected

the hearts of chicken embryos during embryogenesis, and observed that the resulting circulatory

system did not develop properly. Moreover, the absence of erythrocytes when the embryonic heart

begins beating in the linear heart tube stage, supports the belief that the early developing heart does

not pump for oxygen or nutrient transport for the embryo. This naturally leads to an interpretation

that the embryonic heart performs to aid in the growth, shape, and morphogenesis of the heart and

circulatory system [79].
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Furthermore from zebrafish studies, it has been shown that a complete lack of hematocrit in

mutant specimens does not affect their developing vasculature and can be raised to adulthood

[80, 63, 15]. Although these mutants die earlier than their non-mutant counterparts, it is clear that

these organisms were able to develop normally by using some other process, such as diffusion of

oxygen, nutrients, metabolic wastes, and hormones. These erythrocyte-deprived zebrafish mutants

die around 7 dpf, indicating that proper heart function and nutrient delivery is essential for cardiac

morphology only significantly later than 4.5 dpf [12].

Many scientists have proposed that hemodynamic forces help regulate and drive organogenesis in

developing embryos [81, 82, 83, 84, 85, 86, 12, 26, 54, 15, 87, 8, 11]. Such forces, e.g., shear stresses

and pressure forces, may be key components of a large biochemical regulatory network, see Figure 2.11.

The hemodynamic forces act on endothelial cells, where the mechanical stimuli is then transmitted

to the interior of the endothelial cells via intracellular signalling pathways (mechanotransduction).

The biochemical signal is then propagated throughout a pipeline of epigenetic signaling mechanisms,

which may lead to a regulation of gene expression, cellular differentiation, proliferation, and migation,

and angiogenesis [88]. Epigenetics refers to the study of heritable changes in gene expression and

phenotype that occur without any changes in the DNA sequence.

Figure 2.11: An image illustrating the mechanical forces, i.e., shear stress and pressure forces, from
the fluid onto the endocardial wall. Image taken from Lindsey et al. 2014 [11].

In vitro studies have discovered that endothelial cells can detect shear stresses as low as 1dyn/cm2
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resulting in up or down regulation of gene expressions [63]. Embryonic zebrafish hearts beyond 36

hpf are known to admit shear stresses on the order of ∼ 8− 15dyn/cm2. Shear stresses in this range

can cause cytoskeletal rearrangement [12].

However, mechanotransduction has only been successfully studied in conjunction with blood

vessels, which morphologically remodel over time and either widen or regress in order to adapt to

the amount of the flow they carry. Vessels do this by sensing shear stress in order to remodel and

change size as heart rates and blood volume increases. Shear stress initiates a chain of cytoskeletal

rearrangements that help them realign in flow. Namely in laminar flow, genes that promote prolif-

eration and inflammatory responses are downregulated, while in more turbulent flow the opposite

situation occurs where proliferation is upregulated [54].

During cardiogenesis there is an exceptional number of molecular mechanisms that have been

implicated in conferring mechanosensitivity of endothelial cells [15, 89]. This indicates of the

complexity of the cellular response to hemodynamic forces. Moreover it is unclear how much

information in vitro can be accurately extrapolated toin vivo data.

Figure 2.12: The figure illustrates three different experimental placements of a 50µm bead in a
37 hpf embryonic zebrafish heart in vivo. (1) The bead is placed near the sinus venosus, without
obstructing the inflow to the looping heart. Valve and chamber development occur normally, without
malfunction. (2) The bead is placed obstructing the sinus venosus (the atrial inflow tract). (3) The
bead is positioned obstructing the bulus arterosus (ventricular outlfow tract). In cases (2) and (3),
normal blood flow does not occur and neither valvulogenesis, proper cardiac looping, nor chamber
ballooning initiates. Image taken from [12].

Hove et al. 20003 [12] manipulated hemodynamics within devloping zebrafish hearts at 37 hpf.

They used a 50 micrometer bead to obstruct blood flow through the looping heart either at the

atrial inflow region or in the ventricular outflow tract. Furthermore they also performed a control

experiment, where a 50 µm bead was placed near the sinus venosus without obstructing the flow to

illustrate their in vivo surgical procedure did not hinder cardiogenesis. The geometries can be seen
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in Figure 2.12.

In case (1) of Figure 2.12, normal, functional valves and chambers develop. However, in both

cases (2) and (3) neither valvulogenesis, proper cardiac looping, nor chamber ballooning occurs, and

detrimental heart abnormalities arise. Peristaltic-like (myocardial) contractions persist even though

hemodynamics are obstructed. Ultimately, the heart will not develop correctly, as can be seen by

ECG when comparing wave forms from a obstructed zebrafish’s adult counterpart to a wild type

zebrafish.

A similar study by Stekelenburg-de Vos et al. 2008 [90] modified the hemodynamics in a HH

stage 17chicken embryo (∼ 60 hpf in zebrafish) by obstructing the venous inflow tract. They

investigated the effect of venous clipping over a 5 hour period, measuring heart rate, peak systolic

velocity, time-averaged velocity, peak and mean blood flow, peak acceleration, and stroke volume.

All hemodynamic parameters decreased acutely initially; however, only heart rate, time-averaged

velocity, and mean blood flow recovered near baseline levels. This study helps to begin bridging the

gap between quantitative and qualitative in embryonic hemodynamics, which may provide further

insight into any morphological abnormalities or heart dysfunction caused by irregular blood flow.

Moreover, a study by Gruber and Epstein [43] found that improper blood flow may lead to

hypoplastic left heart syndrome (HLHS), in which the ventricle is too small or absent during the

remainder of cardiogenesis. HLHS occurs in approximately 1 in every 4000 births. They also suggest

that HLHS may occur only secondary to perturbations in blood flow, rather than as the primary

genetic or developmental defect in the ventricle.

An investigation into mechanical loading during cardiac looping phase in chick embryos, by

Nerukar et al. [13], found the heart has the ability to respond and adapt to perturbations in normal

morphogenetic mechanisms. They removed the splanchnopleure (SPL) in chick hearts, thereby

reducing compression and longitudinal forces on the heart tube. Remarkably, the heart stiffened

nearly four-fold in response to to the decreased loading. They hypothesize that the increased stiffness

is due to cytoskeletal reorganization and contraction, which is not usually a large contributing
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Figure 2.13: A ventral view of a normal heart tube (1), the elongation and narrowing of the tubular
heart when the SPL is removed (2), and self-restoration of the tubular diameter, thought to be due
to tensile forces. Images taken from Nerukar et al 2006 [13].

stressor in cardiac looping. Moreover, they suggest myocardial cells actively contract in response to

decreased loads. Figure 2.13 shows a ventral view of a normal heart tube (1), the elongation and

narrowing of the tubular heart when the SPL is removed (2), and self-restoration of the tubular

diameter, thought to be due to tensile forces.

Cyclic strains and stretching forces during the cardiac cycle help shape the overall architecture

of the trabeculated ventricle. Furthermore it initiates myogenesis in the cellular components of

primitive trabeculae [91]. Since trabeculation first occurs near peak stress sites in the ventricle,

altering blood flow may directly produce structural and morphological abnormalities in cardiogen-

esis. Previous work focusing on hemodynamic unloading in an embryonic heart has resulted in

disorganized trabeculation and arrested growth of trabeculae [92, 55, 53]. This could be one of the

main contributing factors for embryos experiencing hypotrabeculated ventricles. On the other hand,

embryos with a hypertrabeculated ventricle also experience impaired cardiac function [55]. Such

abnormalities can result in congenital heart defects, and in some cases are detrimental to an embryo

or infant, usually stemming from defective diastolic function.

Even subtle defects in trabeculation, spawned from slight modifications in hemodynamics, may

magnify over time. In concert with Neuregulin signaling levels and other genetic signals, which

also are governed by a complex system of mechanotransduction, trabeculation deformities will
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further deviate heart morphogenesis, and more importantly cardiac function, from normal healthy

cardiogenesis.

Figure 2.14: Data collected from a study from ErbB2 zebrafish mutants by Liu et al. 2010 [5].
(1) These mutants experience a decrease in fractional shortening. It seen that as embryogenesis
progresses, fractional shortening further decreases. (2) Their hearts also undergo bradycardia, where
the heart beat also progressively decreases during development. (3) and (4) are optical mappings of
cardiac conduction in their ventricle at 10 dpf. More prevalent ventricular conduction regions can
seen in wild type mutants (3) compared to their ErbB2 mutant counterparts (4). It is also evident
in (3) and (4) that the wild type ventricle is more massive than the mutant’s.

Liu et al. 2010 [5] showed that in ErbB2 zebrafish mutants that their lack of trabeculae leads to

severe physiological defects. These mutants experienced bradycardia, decreased fractional shortening,

and impaired cardiac conduction. Their data can be seen in Figure 2.14. Due to a decreased heart

rate, these mutant embryonic hearts suffer from more mechanical defects because of the disrupted

hemodynamics, and moreover these ErbB2 mutants die around 12 dpf. Their results directly illustrate

that trabeculae enhance cardiac contractility, which may be a result of the mutant hearts failing to

increase cell mass like what happens normally during trabeculation, and intraventricular conduction

directly.

Furthermore a study by Reckova et al. 2003 [14] found that in chicken embryonic hearts, matura-

tion of the ventricular conduction cells depends on hemodynamic forces. They found that increased

loading accelerated the conversion from an immature to mature pattern of ventricular activation,

while decreased load delayed the conversion. Moreover, mapping of the endocardial surface showed

that trabeculae accounted for the last observations of immature activation patterns, i.e., base-to-apex

activation. Without proper maturation of such myocardial cells, these hearts may later exhibit

ventricular conduction and hence contractile defects, such as arrhythmias, abnormal fractional

shortening, or even ventricular fibrillation.
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Figure 2.15: Evolution of the activation pattern of HH stage 16 to HH stage 36 hearts in chicken
embryos. Initially all electrical activation propagates as base-to-apex signals, which lasts until around
HH stage 27 embryonic chicken hearts. Next a shift to 2 locations of ventricular activation occurs,
one at the base, showing immature activation foci, and another at the apex, the location of mature
activation foci. This type of 2-foci activation persists until HH stage 36, when there is full maturity
in activation patterns. Images adapted from Reckova et al. 2003 [14].

Figure 2.15 illustrates activation pattern evolution from HH stage 16 to HH stage 36 hearts in

chicken embryos. Initially all electrical activation propagates as base-to-apex signals, which lasts until

around HH stage 27 embryonic chicken hearts. Next a shift to 2 locations of ventricular activation

occurs, one at the base, showing immature activation foci, and another at the apex, the location of

mature activation foci. This type of 2-foci activation persists until HH stage 36, when there is full

maturity in activation patterns.

By the same token, proper myocardial function is essential in endocardial cushion development.

In a study by Bartman et al. 2004 [53] an inhibitor of myofibril function was administered in

embryonic zebrafish hearts, whose effects did not directly inhibit blood flow. Even though blood

flow ceased in all embryos, they witnessed a majority of them still being able to form endocardial

rings and cushions by 48 hpf. This suggests that endocardial cushions may not need blood flow

to initiate; however, that does not dissociate blood from being a contributing factor in cushion

formation. Myocardial contractions generate circumferential stress on the heart chamber walls, which

is resisted by the very viscous embryonic blood within the heart. The blood then applies a force
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onto the endothelial lining of the heart, the heart wall applies an equal and opposite force onto the

fluid causing it to move, and finally shear stresses on the heart’s surface are generated [93].

It is evident that there is a complex and strong relationship between intracardial hemodynamics,

genetic regulatory networks, and cardiac conduction. The electrophysiology and hemodynamics of

the embryonic heart are clearly coupled since electrical impulses trigger the contraction of myocardial

cells which then drive blood flow. To complicate matters even more, fluid shear stress is known to

increase the conduction velocities of action potentials within the myocardium, illustrating how the

fluid dynamics, in turn, can also affect the electrophysiology of the embryonic heart [14]. Furthermore,

Tucker et al. 1988 [94] confirmed that hemodynamics are directly involved in proper pacemaker and

cardiac conduction tissue formation.

Hence altering, the hemodynamics, will modify the cardiac conduction system, which will then

cause abnormal contractile behavior, and in turn cause irregular intracardiac hemodynamics. The

cycle can then perpetuate itself, and thus magnify any defects themselves during the remainder of

embryogenesis.

2.3 Zebrafish used as a model organism for cardiogenesis

In vitro experiments, while essential and useful in progressive research among a vast array of

important scientific endeavors, unfortunately cannot be used with complete certainty to describe

what happens in an organism in vivo [54]. For example, in vitro studies have shown that endothelial

cells are sensitive to mechanical stimuli like shear stress and pressure forces, resulting in either up or

down regulation of gene expression, [12, 29, 35, 51]; however, it remains unclear how accurate these

results can be extrapolated to circumstances in vivo.

In vivo experiments are necessary, usually in parallel with in vitro experiments, in studying

heart morphogenesis. Naturally, the next question becomes what organism to consider for such

investigations. Many scientists have performed instrumental experiments, in which progress the

understanding of cardiogenesis, using many different animal species. Cardiogenetic vertebrate animal

models have traditionally been either mice, chickens, frogs, or zebrafish, while some invertebrates
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such as sea squirts have be used for studying linear heart tube dynamics [21, 22, 95].

Heart development remains relatively conserved between all vertebrates, but in particular, mice,

chicken, zebrafish, and human cardiogenesis is conserved. We choose zebrafish, Danio rerio, as our

model organism in studying heart morphogenesis. Zebrafish have genetic complexity to that of

mammals. However, where as avian and mammalian hearts are four-chambered, fish hearts have

only two-chambers.

Figure 2.16: Illustrating optical clarity at two stages of heart morphogenesis, the linear heart tube
stage (1) and (2), and chamber formation (3) and (4). (1) shows the zebrafish embryo 24 hpf, while
in (2) a light microscope is used to visualize the optical clarity of the heart tube, which is outlined
in blue. Blood cells at this stage are spherical. (3) shows the still transparency of the zebrafish at 48
hpf. In (4) a light microscope is used to affirm that two distinct chambers have formed, pumping
more elliptical eryrthorycytes. These images are courtesy of Leigh Ann Samsa, School of Pathology
at UNC-CH.

Zebrafish embryos are transparent, which make them an ideal candidate for imaging in vivo

[63, 44]. This can be seen in Figure 2.16. It is evident from images taken at two drastically different

stages in heart development (the linear heart tube phase at 24 hpf, and the stage proceeding the
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majority of cardiac looping, at approximately 48 hpf), the zebrafish embryo as a whole is still

transparent and allows for high resolution in vivo imaging with only a light microscope.

Another aspect that makes zebrafish an ideal candidate for in vivo studies is there vast scale of

mutants [44, 96] and ease of selective gene knockdown [57]. Furthermore due of their small size and

ease of genetic manipulations, large-scale mutagenesis screens are also possible [57, 75]. Contrary

to other common vertebrate cardiogenesis model organisms, zebrafish mutants can survive with

severe heart defects until later stages of heart development [63]. It is believed that a low metabolism

and their small size attribute to their hearts, although functional, not being essential in the early

developmental stages. This allows for longer analysis of mutants with compromised or no cardiac

function, whereas frog, mouse, or chick models die [44].

2.4 Mathematical Models in Heart Morphogenesis

Unfortunately, animal models, including zebrafish, can only be exploited experimentally, until the

lingering limitations of technology prevail. Even though imaging techniques and genetic manipulation

are extremely powerful tools in studying cardiogenic events, at this junction they cannot be used to

to fully predict all possible ailments and deformities that may arise in heart development [97, 98].

Subtle irregularities may not be resolved and a complete understanding for the remainder of the

morphogenic process is not possible. Moreover, where experiments can take months of planning,

funding, preparation, approval, and time to carry out, mathematical models may be able to to

accurately and swiftly prognosticate heart morphogenic events.

Mathematical models have been used successfully to describe various systems in biology and

medicine. Some examples include cellular blebbing [99, 100, 101, 102], sperm motility and detachment

[103, 104, 105], blood clotting [106, 107, 108], design of antibodies [109], chromosome dynamics [110],

cellular signaling and drug design [111, 112], and cancer progression and treatement [113, 114, 115].

In fact, it has been argued that computational and quantitative biology is paramount to the quest

of understanding biology and life [116]. It is not surprising that mathematical and computational

modeling has latched itself into virtually every subfield of biology.
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Studying cardiac dynamics and blood flow is not a new subfield of science. It dates back until

roughly 130 AD, when the Roman physician Galen palpated the pulse and disproved that arteries and

veins carried air throughout the body. Quite comically, in hindsight, Galen believed that the venous

and arterial systems were exclusive, and that the heart mainly produced heat, while the arteries

cooled the heart, acting as the regulator of body temperature [117]. In the 17th century, the English

physician, William Harvey, made a fundamental breakthrough when he fully described the circulation

of blood throughout the body. Upon doing so, he was the first to understand the role of the heart

in circulation using both qualitative and quantitative metrics, although in a very primitive sense [118].

It was not until the late 18th century, when a more quantitative description of cardiac dynamics

began to unravel, started with Stephen Hales. He was the first to measure arterial pressure in animals

and correlate a loss of pressure to a loss of blood volume in 1733 [119]. In 1840, Jean-Leonard Marie

Pouseuille studied pipe and channel flow, and unearthed an underlying relationship between flow rate,

pressure gradients, and the diameter of a pipe or channel. About forty years later Osborne Reynolds

discovered a dynamical transition from laminar flow to turbulent flow in a pipe based on certain

parameters of the system [120]. Otto Frank, in 1903, uncovered the relationship to ventricular filling

and contraction [121]. Roughly fifty years later in 1955, John Womersley uncovered a mathematical

relationship between pressure, pulsatile flow, and effects of viscosity [122].

Since the 1950s, the scientific community has placed considerable focus on fleshing out an accurate

quantitative description of cardiac dynamics. With ever-increasing computational power, this goal

has become more tractable and realistic; however, there is much work to left to do. There are also

many avenues scientists take to studying cardiovascular dynamics. Some models use 1D geometries

and couple sophisticated vessel wall and viscoelastic constitutive models to study flow through

arterial networks, and can successful match ex vivo data [123]. However, other studies focus on

moving flexible boundaries, immersed within a fluid, to accurately model pumping heart chambers

and leaflets.

The first time fully coupled fluid-structure interaction models could be simulated was with the

invent of Peskin’s immersed boundary method in the 1970s [124, 125]. Since then many fluid-structure

numerical methods, most based off of the immersed boundary method, have been designed and
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implemented to study various problems in biological fluid dynamics. There have also been many

efficient improvements of the immersed boundary method, such as parallelization [126], adaptive

mesh refinement [32, 127], higher order versions of the method [128, 129, 130], or a hybrid finite

difference and finite element immersed boundary method [131].

Furthermore, mathematical modeling in embryogenesis, specifically in heart morphogenesis, has

only relatively recently been placed in the spotlight. For the remainder of this section, we will briefly

review previous mathematical models for various phases in the vein of cardiogenesis.

2.4.1 Linear Heart Tube Modeling

Much of heart morphogenic modeling has focused on the linear heart tube stage [20, 22, 19, 16,

35, 95]. It is clear there is a large discrepancy whether the embryonic heart pumps via peristaltic

contractions of the myocardial walls aligning the heart tube or dynamic suction pumping (impedance

pumping), where a single actuation point is contracted on the heart tube [20, 16, 65].

Peristalsis is known to be efficient at pumping over a large parameter space, i.e., Reynolds number

(Re). In many biological applications, like the ureters and gastrointestinal tract [132], and medical

devices, the traveling actuation wave almost fully occludes the tube, pushing the fluid and/or other

contents further along. Because of the incompressible nature of fluid in these cases, the fluid must

proceed further along the tract. The velocity of the fluid and its contents are being pushed roughly

on par with the speed of contractile wave, forming a linear relationship between frequency and

volumetric flow rates [133].

On the other hand, dynamic suction pumping has recently gathered a lot of interest among the

engineering community due to its elegance [65, 16]. Only a single actuation point is necessary to

induce flow, if the contraction point is in an elastic portion, located asymmetrically between two stiff

ends of a tube. A single contraction forces a bidirectional passive wave to travel down both ends of the

tube. Depending on where such single impedance point is fixed, one wave will reach an end of the tube

before the other, reflecting back. The reflected wave then travels in the same direction as the other

half of the bidirectional wave, thereby creating bulk unidirectional flow for a brief time. While those
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Figure 2.17: Schematic diagram of dynamic suction pumping adapted from Santhanakrishnan et al.
2011 [15]. (A) Illustrates the tube at initially at rest, while (B) shows the asymmetric location of a
single actuation point undergoing contraction. (C) That contraction creates a bidirectional wave
traveling down the tube and in (D) one side of that wave reflects off the left end of the tube, since
that end is closer to the actuation point. In (E) both the reflected wave and last portion of the
initial bidirectional wave are traveling in the same direction. Finally in (F) there is reflection of that
wave, while presumably another contraction on of the actuation will occur.

waves will reflect back, their magnitude will have largely decreased, and presumably another contrac-

tion of the actuation point will have taken place, overpowering the reflected wave’s momentum. Thus

there is interference between the passive waves created by the impedance pumping and the reflected

wave, hopefully creating bulk flow within the tube. This can be seen in Figure 2.17, adapted from [15].

Dynamic suction pump exhibits a nonlinear relationship between frequency and volumetric flow

rate. Moreover, the direction of unidirectional pumping is dependent upon many parameters, such

as frequency and actuation site location.

Studies by Avrahami et. al 2008 [16] Avrahami et al 2008 studied the resonance properties of

dynamic suction pumping in compliant tubes. They examined a wide range of parameters such as ac-

tuation location, frequency, pinching occlusion, and duty cycle, which is the ratio of pinching duration

to time period. Their work discerns frequencies, pinching amplitude, and duty cycle % for opti-

mal flow rates as well as location of pincher along the tube to get desired flow directions and rates [16].
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Figure 2.18: Model geometry as adapted from [16]. Their geometry, although 3D, is axisymmetric.
The model is at rest in (a), and under one contraction in (b). The inlet and outlets are held rigid for
proper wave reflection, and the tube is elastic, allowing passive traveling waves from the actuating.

Their geometry is seen in Figure 2.18, as adapted from [16]. Their geometry, although 3D, is

axisymmetric. The model is at rest in (a), and under one contraction in (b). The inlet and outlets

are held rigid for proper wave reflection, and the tube is elastic, allowing passive traveling waves from

the actuating. Simulations of their model were performed using a finite element scheme within the

ADINA commercial software package. The software was able to incorporate contact of the pincher

with the flexible wall, elasticity dynamics of the tube, and the fluid-structure interaction at the

interface, as well as the dynamics of the fluid.

Their results regarding the dynamic suction pumping mechanism, i.e., location of the actuation

site, occlusion amplitude, and duty cycle % can be found in Figure(2.19). (a) Shows the dependence

of flow rate on the location of the actuation site. As the location moves to the center of the tube,

flow rate decreases. Their data is confirmed against experiments performed by Hickerson et al.

2005, [17, 18]. (b) Illustrates the flow rate dependence on the pinching occlusion, in an almost

linear relationship. As occlusion increase, as does flow rate. In (c) they explore flow rate’s depen-

dence on duty cycle % and see good agreement with experimental work done by Hickerson et al. 2005.

Results adapted from [16] regarding the dependency of flow rate on frequency. It is clear there is

a nonlinear relationship between frequency and flow rates, as expected from dynamic suction pumping.
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Figure 2.19: Results taken from [16] regarding the dynamic suction pumping mechanism, i.e., location
of the actuation site, occlusion amplitude, and duty cycle %. (a) Shows the dependence of flow rate
on the location of the actuation site. As the location moves to the center of the tube, flow rate
decreases. Their data is confirmed against experiments performed by Hickerson et al. 2005 [17, 18].
(b) Illustrates the flow rate dependence on the pinching occlusion, in an almost linear relationship.
As occlusion increase, as does flow rate. In (c) they explore flow rate’s dependence on duty cycle %
and see good agreement with experimental work done by Hickerson et al. 2005. [17, 18]

Figure 2.20: Plot adapted from [16] illustrating the non-linear relationship between flow rate and
frequency for dynamic suction pumps.

Unfortunately these results do not extend into the range of Reynolds number, Re, or Womersley

number,Wo, for linear heart tubes. These results may be useful for the investigation of the embryonic

heart being pumped via dynamic suction pumping; however, they are not conclusive that at this

stage in development the embryonic heart would be able to effectively drive blood at those scales.

These considerations were studied by Baird et al. 2014 [20], which is discussed below.

Studies by Taber et. al 2007 [19] Taber et al. 2007 [19] considered what could cause a

transition from peristaltic to pulsatile flow within a heart tube. They discovered that the presence of

bumps within a channel, i.e., modeling endocardial cushions, were enough to induce such transition.
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Their model results were also in good agreement for various pressure and flow parameters with

experimental data.

Figure 2.21: Geometry of the linear heart tube geometry. In (a), the tubular geometry with
endocardial cushions is shown in its resting state, while (b) illustrates the difference between the
deformation geometry (dashed lines) and rest state (solid lines). As a wave passes by, the cushions
thicken and deform. Figure adapted from Taber et al. 2007 [19].

Their model geometry can be seen in Figure 2.21, adapted from [19]. In (a), the tubular geometry

with endocardial cushions is shown in its resting state, while (b) illustrates the difference between the

deformation geometry (dashed lines) and rest state (solid lines). As a wave passes by, the cushions

thicken and deform. Their model was simulated using a finite element implementation within the

Comsol Multiphysics v3.2a software package [134].

From performing simulations with and without the endocardial cushions, they discovered that

the presence of the cushions induces a transition from peristaltic flow to pulsatile flow by comparing

pressure waveforms and flow profiles in the outflow tract, after the cushions, in each case. These

contrasts can be discerned in Figure 2.22, from [19].

In Figure 2.22-(a) and (c) show the pressure and flow waveforms respectively for a simulation

without endocardial cushions. It is clear in (c) that a flow waveform for peristalsis can be seen. (b)

and (d) illustrate the transition to pulsatile pressure and flow profiles once endocardial cushions are

included.
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Figure 2.22: Results depicted differences in pressure and flow waveforms for both simulations with
and without endocardial cushions in the heart tube. (a) and (c) show the pressure and flow waveforms
respectively for a simulation without endocardial cushions. It is clear in (c) that a flow waveform for
peristalsis can be seen. (b) and (d) illustrate the transition to pulsatile pressure and flow profiles
once endocardial cushions are included. Figures adapted from [19].

Studies by Baird et al. 2014 [20] Baird et al. 2014 [20, 21] studied the flow generation due to

peristalsis and dynamic suction pumping for a wide range of Womersley number, Wo, and diameter

to length ratios of the flexible portion of the tube [20, 21]. They found that the diameter to length

ratio has a pronounced effect on volumetric flow rates as well as direction in dynamic suction

pumping. This effect was not significant in peristalsis since flow rates are determined by the speed of

the contraction wave. However, variations in Wo, performed by varying viscosity, illustrate at what

scales peristalsis and dynamic suction pumping effectively pump fluid. They found that impedance

pumping did not generate significant bulk flow for Wo < 1.

Baird et al.2014 used a racetrack geometry, as depicted in Figure 2.23 adapted from [20, 21].

Both pumping mechanisms were implemented on this same geometry, with peristalsis enforced along

most of the flexible portion on the bottom of the racetrack, while the dynamic suction pumping
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Figure 2.23: Geometry of the closed racetrack. Flexible regions are indicated by the dotted portions,
while rigid parts are shown by solid lines. The pumping mechanisms, peristalsis or dynamic suction
pumping, are implemented along the flexible portion. Figure adapted from [20, 21].

actuation was induced in a small portion along the flexible region away from its center.

The tube is itself was immersed in an incompressible fluid and the fully coupled fluid-structure

interaction model is simulated using the immersed boundary method. To perform each respective

pumping mechanism, the deformations of the tube (for both the traveling contractile wave for

peristalsis or single actuating contraction in impedance pumping) were implementing in a prescribed

fashion using tethering target points to the immersed structure. As the tube is compressed, deforma-

tion forces act on the fluid, driving it to move, while also inducing a complementary force back onto

the immersed boundary.

Their simulation results can be seen in Figure 2.24, adapted from [20]. Their results illustrate

average velocities for peristalsis and dynamic suction pumping as a function of Womersley number,

while also showing effects of varying tube diameter in each case. (A) shows the results for peristalsis,

while (B) illustrates the results for dynamic suction pumping. For Wo in the biologically relevant

range, Wo ≈ 0.1, only peristalsis initiates significant flow.

Studies by Baird et al. 2015 [22] Baird et al. 2015 [22] developed a new neuro-mechanical

model of pumping in valveless, tubular hearts, inspired by the tunicate, Ciona savignyi. The model

incorporated the FitzHugh-Nagumo equations to model the propagation of an action potential that

induces myocardial contraction. They compared fluid flows generated using this neuro-mechanical
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Figure 2.24: Simulation results illustrating average velocities for peristalsis and dynamic suction
pumping as a function of Womersley number, while showing effects of varying tube diameter in
each case. (A) Results for peristalsis, while (B) illustrates the results for dynamic suction pumping.
For Wo in the biologically relevant range, Wo ≈ 0.1, only peristalsis initiates significant flow, with
velocities in the order of ∼ 0.01cm/s, where as dynamic suction pumping at the same scale gives
velocities at least two orders of magnitude smaller. Figure adapted from [20].

pumping model to prescribed peristalsis and prescribed impedance pumping, as in [20], across a

parameter space relevant to the Ciona savignyi. They discovered that the neuro-mechanical pumping

mechanism and peristalsis are able to reproduce the strong flows observed in the tunicate heart;

however, only the neuro-mechanical model was able to produce flow patterns that have been reported

with valveless, tubular hearts [65]. The neuro-mechanical pumping model was able to generate a

bidirectional wave of contraction, which was reported in [65], to which traditional peristalsis, as in

Baird et al. 2014 [20], does not.

Figure 2.25: Geometry of the flexible region of the racetrack. The springs depict muscles that
generate the contraction, once the action potential signal propagates to its location. The muscle
then contracts according to Felectro. Figure adapted from [22].

The same racetrack geometry that was used in [20] was used in here, e.g., Figure 2.23. However,

for the neuro-mechanical model. the flexible tube had additional properties, that included the
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myrocardial muscles that contract upon initiation by an action potential. This model was studied

using the immersed boundary method coupled to the FitzHugh-Nagumo equations.

Figure 2.26: A comparison of the dimensionless spatially-averaged flow velocities measured across
the cross-section of the top of the tube for dimensionless time. The solid line represents the neuro-
mechanical pump, the dashed line is peristalstic pumping, and the dotted line is impedance pumping.
Figure adapted from [22].

For biologically relevant parameter regimes, given byWo ≈ 1, in the Ciona savignyi, a comparison

of the dimensionless spatially-averaged flow velocities measured across the cross-section of the top of

the tube for dimensionless time is found in Figure 2.26. The solid line represents the neuro-mechanical

pump, the dashed line is peristalstic pumping, and the dotted line is impedance pumping.

Neuro-mechanical pumping achieves higher maximum and lower minimum flow velocities than

both impedance pumping and peristalsis. Peristaltic pumping produces strong positive flows with

little back flow, and the flow rapidly approaches a constant velocity during translation of the

contraction site, while flow produced by neuro-mechanical pumping is more transient and unstable.

It does not reach steady flow velocity during the translation of the traveling wave down the tube,

unlike peristalsis. This can be seen in Figure 2.26.

Neuro-mechanical pumping has higher bulk flow rates than impedance pumping; however, bulk

flow rates are still greater in peristalsis than neuro-mechanical pumping. These properties remain

consistent for a wide range of Wo, including the biologically relevant range. This data is seen in

Figure 2.27.
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Figure 2.27: A comparison of the dimensionless spatially-averaged and temporally-averaged flow
velocities measured across the cross-section of the top of the tube for different Wo. The solid line
represents the neuro-mechanical pump, the dashed line is peristalstic pumping, and the dotted line
is impedance pumping. Figure adapted from [22].

Studies by Waldrop et al. 2015 [23] Waldrop et al. 2015 [23] investigated perturbations upon

the traditional assumptions of peristalsis, by studying large-amplitude, short-wave length peristalsis,

rather than small-amplitude, long-wave peristalsis. They focused on the relationships between fluid

flow, compression frequency, compression wave speed, and tube occlusion, to seek out inconsistencies

with the traditional peristalsis flow properties. They discovered that bulk flow speeds produced by

these new assumptions on peristalsis are greater than the speeds of the compression wave, fluid flow is

pulsatile in nature, and flow speeds have a non-linear relationship with compression frequency, when

the compression wave speed is held constant. These properties make peristalsis a viable candidate

for the pumping mechanism in embryonic hearts, when compared to observations in [65].

This model used a similar model to that in Baird et al. 2014 [20]; however, with a short length

flexible region and wider tubular cross-section. This can be seen in Figure 2.28. Similarly the

peristaltic contraction was prescribed in this model.

Data from Figure 2.29 gives a non-linear relationship between fluid flow speed and Wo, which is

uncharacteristic of traditional long-wave, short-amplitude peristalsis. The dotted line gives the speed

for the constant, non-dimensional compressive wave speed. Note that fluid flows are greater than

contraction speed, in this case. This is also not a characteristic of traditional peristalsis. Furthermore,

they illustrate the sensitivity of peristalsis to perturbations of compressive ratio (occlusion) and
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Figure 2.28: Geometry of the racetrack with a shorter length flexible region and wider cross-section,
when compared to Figure 2.23. Figure adapted from Waldrop et al. 2015 [23].

Figure 2.29: Data illustrating the non-linear behavior of these peristalsis assumptions. These figure
show speed vs. a parameter in the model. The figure on the left shows a non-linear relationship
between speed and Wo, where Uavg is given by black circles, Umax by white diamonds, and Upeak as
white, inverted triangles. The middle figure shows how speed changes by varying the compression
ratio (occlusion). The figure on the right shows the fluid speed against the speed of the contraction
wave. The dotted line gives the speed for the constant, non-dimensional compressive wave speed.
The figure was adapted from [23].

wave speed.

Moreover, Waldrop et al. 2015 found that when wave speed is decoupled from initiation frequency

of the peristaltic wave, there is a clear non-linear relationship between flow speed and frequency.

This is shown in Figure 2.30. This new peristalsis data is consistent with qualitative data from [65];

however [65] claims that those observations could only be consistent with dynamic suction pumping.
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Figure 2.30: Data showing the non-linear behavior of peristalsis when wave speed is decoupled from
initiation frequency of the compressive wave. In grey are when wave speed and frequency are linearly
proportional; in black, when wave speed is held constant and frequency is varied. Uavg are circles,
Umax are diamonds, and Upeak are inverted triangles. The figure was adapted from [23].

2.4.2 Cardiac Looping and Chamber Formation Models

Due to its inherent complicated dynamics, most cardiac looping phase mathematical models have

been limited in their robustness. Many of the models focus their efforts on capturing very specific

behavior, rather than the full developmental progression of linear heart tube to a multi-chambered

valvular pumping system [24, 27, 26, 28, 25].

Ramasubramanian et al. 2008 [24] focused on the first stage of cardiac looping, c-looping, when

the heart tube bends ventrally and twists dextrally to become c-shaped. Their model explores the

mechanisms responsible for the torsional components that aid to c-looping. Furthermore Shi et.

al 2014 studies differential myocardial hypertrophic growth as the main driving force for ventral

bending and regional growth, cytoskeletal contraction in the primitive atria, and compressive loads

exerted by the splanchnopleuric membrane to drive rightward torsion [25].

Moreover, Lee et al. 2013 [28] studied the hemodynamics in embryonic zebrafish at 20-30 hpf,

40-50 hpf, and 110-120 hpf. In each case they were interested in computing the time-averaged shear
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stress and pressure gradients near the AV canal. They used Tg(fli1a:EGFP) transgenic zebrafish

embryos to delineate and reconstruct the endocardium for model geometries and validated their flow

profiles against particle image velocimetry experiments.

On the other hand Santhanakrishnan et al. 2009 [26] investigated flow within primitive heart

chambers for various primitive chamber and endocardial cushion geometries. Miller 2011 [27] focused

on ventricular filling in primitive chambers of the heart, for various heart membrane properties and

chamber and cushion geometries. These models, although do not give the full mechanistic progres-

sion of heart tube to chamber ballooning, can be used in reflecting upon necessary developmental

parameters, scales, and events for proper cardiogenesis.

Ramasubramanian et al. 2008 [24] and Shi et al. 2014 [25]. Ramasubramanian et al. 2008

[24] and Shi et al. 2014 [25] investigated the first stage of cardiac looping, called c-looping, where the

heart tube bends ventrally and twists dextrally to become c-shaped. Their focus was the to determine

the mechanisms responsible for driving and regulating c-looping. Their data supports experimental

evidence indicating that c-looping is driven primarily by forces exerted on the embryonic heart

by the splanchnopleure (SPL) and primitive atria. Furthermore their model suggests that slight

perturbations in the stress distribution of the heart can generate an adaptive feedback mechanism

that restores normal looping.

Ramasubramanian et al. 2008’s 2D and 3D model geometries can be seen in Figure 2.31. In (a)

the model for the primitive atria is shown, with its associated cross section, while (b) illustrates

the full 3D geometry for the heart tube to undergo c-looping. A ventral view as well as side

view is given. The models in (a) and (b) are used to explore varying degrees of contraction of

the primitive atria to exert forces which may be responsible for ventral bending when the SPL is

removed. The geometry depicted in (c) is a 2D cross-sectional model for cardiac rotation. This

geometry is used to study effects of SPL removal in attempting to understand the embryonic heart’s

ability to self-correct for small perturbations in cardiac looping. These figures were adapted from [24].
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Figure 2.31: Ramasubramanian et al. 2008’s 2D and 3D model geometries. In (a) the model for the
primitive atria is shown, with its associated cross section, while (b) illustrates the full 3D geometry
for the heart tube to undergo c-looping. A ventral view as well as side view is given. The models in
(a) and (b) are used to explore varying degrees of contraction of the primitive atria to exert forces
which may be responsible for ventral bending. The geometry depicted in (c) is a 2D cross-sectional
model for studying cardiac rotation when perturbations may arise during cardiac looping, here the
removal of the SPL. (HT = heart tube, CT= outflow tract, TA = top atrial region, BA = bottom
atrial region, DM = dorsal mesocardium, FG = foregut wall, MY = myocardium, CJ = cardiac jelly,
and SPL = splanchnopleure). Adapted from [24].

In all cases the geometry was used in a finite element model for cardiac looping, analyzed with

the ABAQUS (version 6.4) software. The tissues in the model were taken as pseudo-elastic and are

slightly compressible. Growth and cytoskeletal contraction were implemented by a subroutine called

User MATerial, in which time-dependent variables were used to incorporate mechanical feedback

mechanisms. However, this model, although rigorous, does not include the effects of the underlying

hemodynamics in this stage of the heart morphogenesis, which may play in an important role.

Some results of various morphogenic loads for their 3D finite element model of c-looping, without

the splanchonpleure, are seen in Figure 2.32, as adapted from [24]. The base geometry with before

mechanical loading is shown in (a), and in (b) the effects of mechanical loading can be seen to cause

the heart tube to deform and ventrally bend. This is in good agreement with experimental data

exploring ventral bending. The model depicted in (c) explores asymmetric contraction between each

side of the heart tube, with contraction nonexistent on the right side. [24] found that the amount of

ventral bending is decreased as compared to the situation in (b). Furthermore in (d) they show the

case when contraction is turned off on both sides, giving rise to even less bending than (c).

To study specific mechanical effects of SPL removal, [24] constructed a 2D model of a cross-

41



Figure 2.32: Three-dimensional finite element model for cardiac looping without the SPL. The
base geometry with before mechanical loading is shown in (a), and in (b) the effects of mechanical
loading can be seen to cause the heart tube to deform and ventrally bend. This is in good agreement
with experimental data exploring ventral bending. The model depicted in (c) explores asymmetric
contraction between each side of the heart tube, with contraction nonexistent on the right side.
They found that the amount of ventral bending is decreased as compared to the situation in (b).
Furthermore in (d) they show the case when contraction is turned off on both sides, giving rise to
even less bending than (c). Adapted from [24].

Figure 2.33: A 2D model of a cross-sectional area of the heart tube with myocardial and cardiac
jelly layers fixed to the dorsal mesocardium is seen in (b),(b’), and (b”). Progressive time points
within the simulation are shown, with the associated experimental data at the same time points in
(a),(a’), and (a”). In (a) and (b) show the chick stage-11 heart with the SPL in contact with the
myocardium. The same heart is shown in (a’) and (b’) but 20 minutes post-SPL removal. In each
case an immediate loss of rotation can be seen. However, 6 hours later in both cases the heart shows
reversal back to being fully rotated, as signaling a return to normal development. Figure adapted
from [24].
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sectional area of the heart tube with myocardial and cardiac jelly layers fixed to the dorsal meso-

cardium. Progressive time points within the simulation are shown in Figure 2.33-(b),(b’), and (b”),

with the associated experimental data at the same time points in (a),(a’), and (a”), as adapted from

[24]. In (a) and (b) show the chick stage-11 heart with the SPL in contact with the myocardium. The

same heart is shown in (a’) and (b’) but 20 minutes post-SPL removal. In each case an immediate

loss of rotation can be seen. However, 6 hours later in both cases the heart shows reversal back to

being fully rotated, as signaling a return to normal development.

Their model seems to capture qualitatively most of the dynamics that occur to do SPL removal.

However, since their model is purely a mechanical loading model without incorporating the underlying

hemodynamics, it is unclear how effective this mechanism will be once one includes the relevant

pulsatile blood dynamics.

Furthermore Shi et al. 2014, [25], extended the investigations of [24] by studying the effects of

removing omphalomesenteric veins, OVs, as well as the heart tube using the same computational

model. The omphalomesenteric veins empty into the sinus venosus.

Figure 2.34 illustrates the qualitative similarities between experiments and simulation for remove

the OVs and heart tube. (A) and (B) show experimental images for when the left OV is removed

immediately after removal and 12 hrs. later. Similarly (C) and (D) show analogous images, but for

right OV removal, as does (E) and (F) but for when both OV are removed. (G) and (H) show images

of removing the portion of the heart tube itself above the primitive atria. The black lines illustrate

the cuts where each component was surgically removed. (A’) and (B’) illustrate the complementary

simulations to the images in (A) and (B). Similarly (C’) and (D’) are associated simulations for (C)

and (D), (E’) and (F’) are models of (E) and (F), and finally (G’) and (H’) illustrate the simulations

performed for heart tube removal at similar time points of (G) and (H). In all cases the simula-

tions model predicts the same qualitative behavior as the experiments. The figure is adapted from [25].

They also quantified rotation angles of the heart tube during c-looping in chick hearts from HH

Stage 10 to 12 in both experiments and simulations, Figure 2.35, adapted from [25]. (A) illustrates
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Figure 2.34: (A) and (B) show experimental images for when the left OV is removed immediately
after removal and 12 hrs. later. Similarly (C) and (D) show analogous images, but for right OV
removal, as does (E) and (F) but for when both OV are removed. (G) and (H) show images of
removing the portion of the heart tube itself above the primitive atria. The black lines illustrate
the cuts where each component was surgically removed. (A’) and (B’) illustrate the complementary
simulations to the images in (A) and (B). Similarly (C’) and (D’) are associated simulations for (C)
and (D), (E’) and (F’) are models of (E) and (F), and finally (G’) and (H’) illustrate the simulations
performed for heart tube removal at similar time points of (G) and (H). In all cases the simulations
model predicts the same qualitative behavior as the experiments. Figure adapted from [25].

how the rotation angle is defined, that is, as the angle between the the long axis of the elliptical

lumen and the dorsal-ventral axis, all within a cross-section of the heart tube. The components are

labeled as MY, as the myocardium, DM, as the dorsal mesocardium, and CJ, as the cardiac jelly.

(B) compares the experimental rotation angle against the hearts at HH stages 10 to 12. The model

supports the experimental data, and both show an increase in rotation angle as heart development

progresses.
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Figure 2.35: (A) illustrates how the rotation angle is defined, that is, as the angle between the the
long axis of the elliptical lumen and the dorsal-ventral axis, all within a cross-section of the heart
tube. The components are labeled as MY, as the myocardium, DM, as the dorsal mesocardium, and
CJ, as the cardiac jelly. (B) compares the experimental rotation angle against the hearts at HH
stages 10 to 12. The model supports the experimental data, and both show an increase in rotation
angle as heart development progresses. Adapted from Shi et al. 2014, [25].

Figure 2.36: A comparison of the strain within various components of chick hearts at HH stages 10
to 12 from experimental data to the simulated model. LHT, RHT, and VHT stand for the right, left,
and ventral sides of the heart tube. LOV and ROV describe the left and right omphalomesenteric
veins and LAIP and RAIP are the left and right sides of the anterior intestinal portal. Figure
adapted from Shi et al. 2014, [25].
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Moreover, Shi et al. 2014 also compared the strain within various components of chick hearts

at HH stages 10 to 12 in experiments and simulations, shown in Figure(2.36), adapted from [25].

In each case there is decent agreement between models and experiments, showing similar trends.

LHT, RHT, and VHT stand for the right, left, and ventral sides of the heart tube. LOV and ROV

describe the left and right omphalomesenteric veins and LAIP and RAIP are the left and right sides

of the anterior intestinal portal.

Their work suggests that ventral bending and and rightward torsion are driven by differential

hypertrophic growth and myocardial forces and regional growth, cytoskeletal contraction of the OVs

(primitive atria), and compressive loads by the SPL respectively. They also speculate that several

other mechanisms contribute to c-looping but only in secondary effects, but may play central roles

when looping is perturbed [25].

Santhanakrishnan et al. 2009 [26] Santhanakrishnan et al. 2009 [26] explored flow within

chambers on the embryonic heart. They performed numerical investigations and validated them

with flow visualization experiments on equivalently scaled physical models. Their models included

various cardiac chambers and cardiac cushions geometries and studied the flow within the chambers

for Reynolds numbers ranging from 0.01 to 1000. They found that intracardial vortex formation

occurred for Reynolds numbers on the order of 1-10; however, the transition to vortical flow was

highly sensitive to chamber and cushion geometry.

The geometry for the physical model and mathematical model is found in Figure 2.37, adapted

from [26]. The velocity, U, at the inflow is held constant during the simulations and experiments

as is the channel width, d. The chamber depth, C, and cushion heigh, V, are varied as geometric

parameters. Moreover, the Reynolds number was varied by either changing the fluid viscosity

(simulation) or fluid composition (physical experiments). The mathematical model simulations were

performed using the immersed boundary method using a tethered boundary formulation to keep

the heart tube structure fixed in place. The physical experiments were performed using a propeller

driven flow tank based on the design by Vogel and LaBarbera 1978, [135], utilizing a variable speed
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Figure 2.37: Geometry used in the mathematical model as well as physical model, adapted from
[26]. The velocity, U, at the inflow is held constant during the simulations and experiments as is the
channel width, d. The chamber depth, C, and cushion heigh, V, are varied.

pump.

Figure 2.38: Simulations without cardiac cushions in which the Reynolds number is varied, showing
that the regime for vortex formation happens around Re ∼ O(10). Adapted from [26].

From varying the Reynolds numbers in both simulations and physical experiments, vortex forma-

tion occurred for Re between 1 and 10, depending on the chamber and cushion geometries. The

embryonic heart at this stage is on the order of O(0.01− 0.1). For Reynolds numbers on the order

of the biological relevant case, there is no flow separation and hence no closed vortices appear. For

Re above this range, a new regime occurs where flow separation is evident and vortices form. This

can be seen in Figure 2.38, adpated from [26].

To validate these numerical results, the data was compared to that of the physical models. An

example comparison is shown in Figure 2.39, in which a simulation and physical experiment are

compared for Re = 50. In both cases the dynamics appear qualitatively equivalent.
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Figure 2.39: A comparison of a numerical simulation and physical model experiment for Re = 50.
Both show the formation of a large intracardial vortex and are in qualitative agreement. Adpated
from [26].

Santhanakrishnan et a. 2009 discovered that vortex formation is highly sensitive to heart mor-

phology and Re in the model. Moreover, it implies that the morphology of the embryonic heart

is important to the underlying hemodynamics, which is also thought to help regulate and drive

cardiogenesis itself. These results also illustrate the importance of modeling each phase of heart

development, as incremental perturbations to the geometry (growth), can have large bifurcations in

the hemodynamics there within.

Miller et al. 2011 [27] Miller et al. 2011 investigated the spatial distribution of normal forces

exerted on the heart’s endothelial layer by the underlying hemodynamics during chamber ballooning.

They studied these effects in regards to cushion formation and cardiac wall stiffness. As one may

expect, the normal forces acting on the endothelial layer, increased during atrial contraction since

the ventricular walls must be stretched during filling. Moreover, endocardial cushion height and

heart wall stiffness both dramatically increase the force necessary to both fill and contract the ventricle.

The geometry used in [27] is very similar to the geometry from [26]; however, rather than

the boundaries being fixed, they move during the simulation, allowing the atria to contract, in a

prescribed fashion. The fluid then fills the ventricle, which is composed of a flexible membrane. The

ventricle contracts due to elastic deformation forces wanting to return it to its equilibrium state.

The immersed boundary method is implored to solve the full fluid-structure interaction equations,

via a tethered target-point and virtual spring force implementation. In their study, they varied the

48



Figure 2.40: Model geometry, where the atrial wall moves in a prescribed manner, allowing the
ventricle to fill, via its wall being flexible, and then ventricular contract occurs due to the elastic
deformations of its wall wanting to return to its equilibrium rest state. Adapted from Miller et al.
2011 [27].

wall stiffnesses via changing the stiffness parameters as well as the cushion heights.

Parameter sweeps were performed for a constant stiffness and varying endocardial cushion heights,

as well as the other case for, a constant cardiac cushion height but varying ventricular wall stiffnesses.

These results can be seen in Figure 2.41, which is adapted from [27]. When varying the cushion

height, they discover that the maximum normal force acting on the heart wall increases more than

fivefold for an increase of cushion height from 0 to 15µm. This is illustrated in (A) and (B). On the

other hand, when holding the cushion height constant, at15µm, and varying the wall stiffness, they

find that the force required to fill the ventricle also increases. Figure adapted from [27].

This work further illustrates the importance of modeling each phase of heart development to

gain insight into the biological mechanisms within cardiogenesis. Furthermore, it shows that it is

imperative to model these stages of heart morphogenesis using a moving boundary approach to be

able to adequately capture critical dynamics.

Lee et al. 2013 [28] Lee et al. 2013 investigated the time-varying and spatial varying wall

shear stress in the AV canal of embryonic zebrafish hearts. They found through a combination of

computational modeling and PIV validation that both intracardial velocities and heart rates increase
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Figure 2.41: Data from parameter sweeps on the endocardial cushion heights, (A) and (B), and
varying ventricular wall stiffness, (C) and (D). In (A) and (B), varying the cushion height from 0 to
15µm increases the normal force acting on the chamber walls more than fivefold. In (C) and (D)
varying the ventricle wall stiffness also increases the force necessary for ventricular filling. Adapted
from Miller et al. 2011, [27].

as morphogenesis progresses, as well that atrial systole decreases in duration from earlier to later

stages of development. Furthermore their simulations predict an increase in wall shear stress (WSS)

and pressure gradients across the AV canal for later stages in development, with a complementary

decrease in bidirectional flow due to the maturation of the cardiac valvular system [28].

Tg(fli1a:EGFP) embryos were used to obtain biologically relevant endocardium geometries in the

computational mode and perform in vivo PIV experiment, in concert with green fluorescent protein
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Figure 2.42: Tg(fli1a:EGFP) embryos were used to obtain biologically relevant endocardium ge-
ometries in the computational mode and perform in vivo PIV experiment, in concert with green
fluorescent protein (GFP). This can be seen in Figure(2.42)-(a),(b), and (c), where (a) shows the
tubular embryonic heart between 20-30 hpf, (b) illustrates the heart structure between 40-50 hpf,
and (c) shows the distinct two chamber geometry around 110-120 hpf. The corresponding model
geometries can be found in (a’), (b’), and (c’) respectively. A denotes the atria and V stands for the
ventricle. Adapted from [28].

(GFP). This can be seen in Figure(2.42)-(a),(b), and (c), where (a) shows the tubular embryonic

heart between 20-30 hpf, (b) illustrates the heart structure between 40-50 hpf, and (c) shows the

distinct two chamber geometry around 110-120 hpf. The corresponding model geometries can be

found in (a’), (b’), and (c’) respectively. A denotes the atria and V stands for the ventricle. This

figure is adapted from [28]. Note that each simulation image depicts the magnitude of velocity after

atrial contraction; however, the scale bars in each simulation are different.

The simulations were performed using an in house code developed at UCLA, using a 2D finite

element model for the heart walls, assuming a Newtonian incompressible fluid there-within, in

a Lagrangian-Eulerian framework. The wall motions were prescribed, using data collected from

Lagrangian tracked images of experimental data. To validate their simulations, PIV experiments were

performed in each stage, focusing on averaged flow velocities in the AV canal during atrial contraction.

A comparison between experimental PIV data and the computational model is seen in Figure

2.43-(c). In (c) time averaged flow velocities across a cross section of the AV canal were corroborated

for 30 hpf, 70 hpf, and 120 hpf embryonic zebrafish hearts. There is decent agreement between
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Figure 2.43: (a) illustrates the use of transgenic Tg(fli1a:EGFP)y1 embryos for a clear visual
delineation of the endocardial layer for constructed the computational model and (b) shows the use
of Tg(gata1:dsRedsd2 transgenic zebrafish to visualize hematocrit for accurate PIV and particle
tracking. A denotes the atrium, V, the ventricle, and B, the bulbus artereosus. In (c), a comparison
between time averaged flow velocities through a cross section of the AV canal is shown between
experimental PIV data and the computationally modeled data. Images and data taken from [28].

modeled and experimental data. (a) illustrates the use of transgenic Tg(fli1a:EGFP)y1 embryos for

a clear visual delineation of the endocardial layer for constructed the computational model and (b)

shows the use of Tg(gata1:dsRedsd2 transgenic zebrafish to visualize hematocrit for accurate PIV

and particle tracking. A denotes the atrium, V, the ventricle, and B, the bulbus artereosus. Figure

adapted from Lee et al. 2013, [28].

Figure 2.44 gives a plot of the endocardial shear stress within the AV canal are shown for zebrafish

hearts between 20-30 hpf, 40-50 hpf, and 110-120 hpf in (a),(b), and (c) respectively, over the course

of one heart beat. In each case there are two peaks, one illustrating the time of maximum atrial

contraction and other for the period of maximum ventricular contraction. As the heart progresses,

the shear stress increases in the AV canal, with a fivefold increase between 20-30 hpf and 40-50 hpf,

and another threefold increase between 40-50 hpf and 110-120 hpf. This results are better quanitified

in (d), which shows the averaged predicted shear stress at each stage of development in the AV

canal. (e) illustrates the averaged pressure gradients within the AV canal for varying phases of heart

morphogenesis, as predicted by the computational model. Figures adapted from [28].

The 2D moving domain computational fluid dynamics model implemented by Lee et al. 2013 pro-
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Figure 2.44: (a),(b), and (c) show the wall shear stress within the AV canal for zebrafish hearts
between 20-30 hpf, 40-50 hpf, and 110-120 hpf over the course of one heart beat, as predicted by the
computational model. (d) gives the averaged predicted shear stress at each stage of development in
the AV canal. (e) illustrates the averaged pressure gradients within the AV canal for varying phases
of heart morphogenesis, given by the computational model. Figures adapted from [28].

vides an insightful link between hemodynamics and cardiac morphogenesis in various phases of heart

development. The accuracy of the model geometry reflecting the biological morphology is limited

only by the clarity and resolution of the imaging techniques used in parallel with transgenic zebrafish

embryos. However, their model does not capture trabeculation morphologies within the developing

ventricle that are hypothesized to have an important role in regulating the intracardial hemodynamics.

2.4.3 Cardiac Valve Development

Since valvular defects are the most common cardiac defects, quantifying the mechanisms of

valve development is crucial to understanding how to possibly treat such disorders [29]. Hence

there have been various mathematical models to study cardiac valve development, namely effects of

endocardial cushions on the underlying hemodynamics and vice versa [29], and even transformation

from cushions to a more leaflet morphology [30]. When endocardial cushions beginning forming
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in the AV canal, the underlying hemodynamics exert shear stresses and pressure on the primitive

cushions, that contribute to remodeling the mounds into valve leaflets.

Biechler et al. 2010 [29] Biechler et al. 2010 [29] devised a tubular geometry with a cushion-like

projection to study the shear stresses exerted on the endocardial cushions for a developing chick

heart. Upon doing so, they uncovered flow patterns and resulting forces, shear stresses and pressure,

have comparable orders of magnitude, and in unison may produce a vortical flow that aids in

cushion-to-leaflet transformation.

Figure 2.45: The tubular geometry used to study valve leaflet formation can be seen in Figure
2.45, adapted from [29]. Although shown in 3D, the model investigated was a 2D construction,
where hemodynamic forces will act both tangentially (shear stress) and normal (pressure) to the
endocardial cushions.

The tubular geometry used to study valve leaflet formation can be seen in Figure(2.45), adapted

from [29]. Although shown in 3D, the model investigated was a 2D construction, where hemodynamic

forces will act both tangentially (shear stress) and normal (pressure) to the endocardial cushions.

The model equations describing the 2D incompressible Newtonian steady-state flow through the

geometry were solved in COMSOL Multiphysics 3.4 [134].

Figure 2.46: The steady-state flow profiles, illustrated via streamline analysis, are shown for Re = 4.2,
(a), and Re = 71.0, (b). It is seen that the size of eddies is sensitive to Re, where smaller eddies are
observed in the smaller Re case, (a), while larger vortices form after the flow passes the cushions in
(b), corresponding to a higher Re. Figure adapted from [29].
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The steady-state flow profiles, illustrated via streamline analysis, can be found in Figure 2.46,

adapted from [29]. Two simulations are shown, one for Re = 4.2, (a), and Re = 71.0, (b). It is seen

that the size of eddies is sensitive to Re, where smaller eddies are observed in the smaller Re case,

(a), while larger vortices form after the flow passes the cushions in (b), corresponding to a higher Re.

Figure 2.47: Shear stress and pressure profiles corresponding to simulations for Re = 4.2, (a), and
Re = 71.0, (b). It is clear that in the higher Re case, (b), the cushions undergo more shear stress
than in the lower Re case. However, in both cases the pressure exerted on the cushions remains
relatively static. Furthermore, the maximum shear is located at the center of the cushion. Adapted
from Biechler et al. 2010, [29].

For each simulation shear stress and pressure were computed over the cushions. Some results

are found in Figure 2.47, corresponding to Re = 4.2, (a), and Re = 71.0, (b). It is clear that in the

higher Re case, (b), the cushions undergo more shear stress than in the lower Re case. However, in

both cases the pressure exerted on the cushions remains relatively static. Furthermore, the maximum

shear is located at the center of the cushion. Adapted from Biechler et al. 2010, [29].

Unfortunately the paper does not discuss, which simulations are biologically relevant, or why

downstream vortex formation would influence and be critical for progression from endocardial

cushions to valve leaflets. However, a better understanding of shear stress and pressure distributions
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on the cushions can help formulate better hypothesis about such progression.

Buskohl et al. 2012 [30] Buskohl et al. 2012 [30] modeled the progression from endocar-

dial cushions to valve leaflets via exerting hemodynamic forces on the cushions integrated with

evolution equations that regulate the growth and remodeling aspects in the model. They discov-

ered that the pressure distribution on the AV cushion was sufficient to induce cushion-elongation

in the direction of flow to remodel the cushions to leaflets. Moreover, they found that shearing

minimally altered tissue volume, but assisting in remodeling of the tissue near the endothelial surface.

Figure 2.48: In (a), a cross-section of the AV canal geometry is shown, with endocardial cushions
protruding into the canal. The flow is specified going left to right, i.e., from the atrium to ventricle.
(b) illustrates the colormap of the modeled growth rate parameter, a(r) in a 2D cushion cross-section.
Figure adapted from [30].

The computational model geometry is found in Figure 2.48, adapted from [30]. In (a), a cross-

section of the AV canal geometry is shown, with endocardial cushions protruding into the canal. The

flow is specified going left to right, i.e., from the atrium to ventricle. (b) illustrates the colormap of

the modeled growth rate parameter, a(r) in a 2D cushion cross-section.

The simulations were performed by an iterative approach that attempts to decouple the hemody-

namics forces with growth and remodeling in a solid finite element model. First the pressure and

velocity profiles were updated from the pure fluids problem. The induced shear stress and pressure

forces were then transferred to the solid finite element model to simulate the appropriate elastic

and inelastic deformations. After a user-specified time of inelastic deformation, the fluid mesh was

updated, and the fluid model was again simulated in the revised AV geometry, and all steps repeated.
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Figure 2.49: Figure illustrating the iterative approach in decoupling the fluid component from the
solid mechanics portion of the fluid-solid-mechanics model. In step 1, the fluid model is solved and
then in step 2 the hemodynamic forces, shear and pressure, and transferred to the solid mechanics
finite element model. In step 3, the solid model equations are solved and hence the valve deforms.
Finally in step 4, the fluid mesh is updated, and all preceding steps are repeated. Adapted from [30].

These ideas are depicted in Figure 2.49, taken from [30].

Figure 2.50: In (a) a plot of the area ratio vs. simulation time is shown. There are four cases
illustrated- shear only, pressure only, no external loads, and full external loads (both pressure and
shear). It is clear that for the area ratio, there is good agreement between pressure and the full
external load cases, while the shear only case and no external load case are also consistent. In (b),
deformations from each configuration (shear only, pressure only, and full external loading) are shown.
It is evident that the cushion begins to elongate under these hemodynamic forces in the direction of
flow. Figure adapted from [30].

From the fluid-solid model, it was seen that pressure modulates volume deformations, while

shearing regulates remodeling. In Figure 2.50-(a), a plot of the area ration vs. simulation time is

shown. There are four cases illustrated- shear only, pressure only, no external loads, and full external
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loads (both pressure and shear). It is clear that for the area ratio, there is good agreement between

pressure and the full external load cases, while the shear only case and no external load case are also

consistent. In (b), deformations from each configuration (shear only, pressure only, and full external

loading) are shown. It is evident that the cushion begins to elongate under these hemodynamic

forces in the direction of flow. Figure adapted from [30].

Figure 2.51: In (a) there is good qualitative agreement between the shear only and full external
load cases, while there is agreement between the pressure and no external load cases, showing
that shearing has a greater effect on migration of the top center point. (b) further illustrates that
orientation angle has greater dependence on shear than pressure from simulation images. These
figures are adapted from [30].

On the other hand, the orientation angles of the top center point of the cushion is coordinated

by the shear stress, rather than the pressure forces. This is clear from Figure2.51-(a). There is

good qualitative agreement between the shear only and full external load cases, while there is

agreement between the pressure and no external load cases, showing that shearing has a greater

effect on migration of the top center point. (b) further illustrates that orientation angle has greater

dependence on shear than pressure from simulation images. These figures are adapted from [30].

Buskohl et al. 2012’s data strongly suggests that pressure is responsible for cushion growth and

remodeling, while shearing may play a significant role in surface remodeling on the cushions. More-

over, their model also predicted that mechanical aspects of valvulogenesis may be self-propagating,

since the newly transformed elongated cushion shape only promoted further elongation to a leaflet

morphology. In the AV canal, these hemodynamic forces may be the key regulators in the progression
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of endocardial cushions to leaflets; however, they may not be the only components in modeling the

remodeling and growth in other valves of the heart [30].
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CHAPTER 3

Mathematical Methods

We’re not going to use magic?

- Ron Weasley (HP and the Order of the Phoenix)

In this chapter, we will introduce the fundamental equations of fluid dynamics, namely the

Navier-Stokes equations, their non-dimensionalization, dimensionless numbers of interest that are

used to quantity different biological scales, vorticity and streamlines, and our fiber model’s material

properties, e.g., elasticity and/or rigidity, equations.

Furthermore due to the complicated nonlinear form of the Navier-Stokes equations, and inherent

difficulty attached to coupling elastic interactions, we must use numerical methods to solve our

model system. In the remainder of this chapter we will discuss the numerical scheme we employ to

solve the fully coupled fluid-structure interaction, the immersed boundary method.

3.1 Conservation of mass, momentum, and the Navier-Stokes equations - oh
my!

In this section we will introduce and derive the governing equations of fluid dynamics, the

Navier-Stokes equations, via conservation of momentum and mass. We will do this in two different

ways. First, we will derive the Navier-Stokes equations using an intuitive approach. We will begin by

motivating the different forces, e.g., force densities, that may act on a parcel of fluid, and upon doing

so will lead us to the governing equations. Secondly, we will use derive the equations by considering

the conservation of mass and momentum for a continuum and then directly apply the transport

theorem. We will also briefly address conservation of angular momentum.
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3.1.1 Intuitive derivation of the Navier-Stokes Equations

In this subsection we will introduce the basic idea of a fluid and derive the governing equations

of fluid dynamics using an intuitive approach. As we will see, the Navier-Stokes equations include an

equation giving the conservation of momentum of the fluid and an equation giving the conservation

of mass of a fluid.

Intuitive derivation momentum equation The story of the motion of fluids has no clear place

beginning. We first begin with the initial goal of defining what we mean by a fluid. As compared

to solids, a fluid cannot maintain its shape under any amount of shear stress for any amount of

time. That is to say, forces parallel to the surface of the fluid will affect its overall shape and

behavior. The way to think about a fluid is as a continuum of particles, whether they are gas

particles, liquid particles, or even plasma elements. One then tries to understand the overall flow of

the continuum rather than the single trajectories of any one particle. If you have had the pleasure of

being well-versed in electromagnetism, you could think of a fluid like a current, in that you do not

study a current with discrete moving charges but rather as a whole.

Therefore asking oneself, what it means to have a single quantity of fluid is a vague and esoterically

silly question. Instead we begin quantifying fluid dynamics with the next closest idea, a single cubic

blob, or parcel, of fluid. We first wish to describe the forces that can act upon this fluid blob. To

simplify this even more, let’s assume the fluid is incompressible. This allows us to believe that this

fluid parcel has a constant material density. The incompressible condition states that

∇ · v = 0, (3.1)

where v is the velocity of the fluid. The mass of the fluid blob is the density of the fluid, ρ, multiplied

by the volume of the blob, δV . Hence the mass is ρ(δV ).

The next natural question to ask is what forces are acting, or can act, on the fluid blob? On

each face of the blob, the most primitive forces would be a normal force onto the fluid parcel, i.e.,

pressure, and a force tangent to the face due to the viscosity of the fluid, i.e., shear. Both pressure
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and shear stress are “internal fluid forces", in which exist due to the nature of continuum mechanics.

For example, even if the fluid is at rest, e.g., the fluid velocity is zero everywhere, these forces still

exist and must be used to compute the equilibrium state the system is in.

Moreover, there are external forces that can act of the fluid. These forces may come from a

background physical field, e.g., electromagnetic forces or gravity, or may be due to moving immersed

structures, whether elastic or inelastic, in which can exert a force onto the fluid. We note that the

latter is the case we consider for our biological fluid-structure interaction models. Furthermore,

in our considerations, the immersed structure is deformable under the presence of fluid forces, via

non-zero fluid velocities, and these elastic deformations cause the structure to want to return to a

lower energy state, and hence the structure exerts a force back onto the fluid.

Naturally, since we have we have multiple forces acting on the fluid parcel, and because we are

not at the subatomic physical regime nor are we assuming our fluids will be traveling near relativistic

velocities, we can use the familiar form of conversation of momentum, i.e., Newton’s 2nd Law, to

quantify our system,

(ρδV )
Dv

Dt
=
∑
i

Fi = Fpressure + Fshear + Fext (3.2)

The only unfamilar character in (3.2) is writing the acceleration operator as D
Dt rather than

the traditional d
dt . Typo? Nope! This is one of the very subtle, but fundamental points in fluid

mechanics. We found the acceleration for this fluid blob at one particular point in time, not the

entire fluid itself! We have no way of knowing what the acceleration of the fluid is anywhere else

besides at this particular point in time. Luckily we can easily remedy this.

Note that if the velocity of the blob is v(x, y, z, t), the velocity of the same blob at a time ∆t

later will be v(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t), where

∆x = vx∆t , ∆y = vy∆t , ∆z = vz∆t.

Hence to first order we get the following approximation,

v(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t) = v(x, y, z, t) +
∂v

∂x
vx∆t+

∂v

∂y
vy∆t+

∂v

∂z
vz∆t+

∂v

∂t
∆t.
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Therefore from the above we find the acceleration to be

Dv

Dt
=

∆v

∆t
=
v(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t)− v(x, y, z, t)

∆t
=
∂v

∂x
vx +

∂v

∂y
vy +

∂v

∂z
vz +

∂v

∂t
.

Because this is exactly the definition of partial derivative from elementary Calculus, pushing this

into a more sophisticated mathematical language we find that

Dv

Dt
= (v · ∇)v +

∂v

∂t
. (3.3)

Traditionally the operator D
Dt is called the material derivative. The material derivative in our

case describes the evolution of a particular fluid blob that moves along a certain trajectory, as it

flows alongside the rest of the fluid. To describe the overall velocity field of the fluid, we need (3.3)

to connect the evolution of our particular fluid blob to the overall evolution of the entire fluid.

Therefore we can finally put together a skeletal version of the Navier-Stokes equations,

(ρδV )

[
∂v

∂t
+ (v · ∇)v

]
=
∑
i

Fi = Fpressure + Fshear + Fext (3.4)

As a quick aside, it is interesting to note that the fluid may experience an acceleration even under

constant velocity. We consider the case when ∂v
∂t = 0. Hence the only term left from the material

derivative is (v · ∇)v. It is not obvious how this term describes the acceleration of fluid, but imagine

what would be one of the fascinating flows to witness- water flowing in a circle with constant velocity.

Even though the velocity at a given point in the flow is constant, the velocity of a particular blob in

the flow points in a different direction any short time later. This of course can be summarized in

introductory physics as centripetal acceleration.

We will now motivate the derivation of each of these forces in (3.4).

Normal Forces: Pressure

First we consider a force normal to the fluid parcel’s body. Recall that pressure P = force
area , i.e.,

to get the normal force, one will need to multiply the pressure by the area considered. Now consider

the pressure on the left wall of the blob at x. We find it to be pdydz. The pressure on the face
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at an infinitesimal distance ∆x further we get −
(
p+ ∂p

∂xdx
)
dydz. Hence the net pressure in the x

direction is:

pnetx = pdydz −
(
p+

∂p

∂x
dx

)
dydz = −∂p

∂x
dydz.

Hence looking at the pressure on the remaining faces of the cube lead us to get that the force due

to pressure per unit volume is −∇p, or the pressure force itself is −(δV )∇p. This idea is illustrated

in Figure(3.1).

Figure 3.1: Pressure gradients acting on a fluid parcel.

Therefore plugging this term into the conversation of momentum, e.g., (3.4), we obtain

(ρδV )

[
∂v

∂t
+ (v · ∇)v

]
= −(δV )∇p+ Fshear + Fext (3.5)

Tangential Forces: Shear-Stress

To understand tangential forces on the fluid parcel, it is imperative to that get a clear idea of

what viscosity is, and moreover, what shear-stress is. As a child, have you ever played a game with

someone tries to push you over, but the catch is that you are only allowed to stand still and pray

your feet and the ground bonded to form some kind of stable alliance? If your friend (or foe) has any

common sense, they will try to push you over somewhere around the head, since that will create the

more torque and instability then if they tried to push you over by the knee. Unfortunately, any push

by them is going to slightly perturb your stand-still behavior, but we shall only consider a force

induced at the very top of our head.
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In a very crude nutshell, this is the idea of a shear-stress. The viscosity of a fluid can be thought

to be the resistance of the fluid to perturb its original state due to this applied tangential force.

The analogy makes more sense when we consider what has been discovered experimentally of fluids

against a boundary. At the boundary of a flow, like a wall, it’s been seen that the fluid velocity on

the boundary is zero. So if you think of a single fluid blob "standing" against the boundary, the very

bottom of the fluid blob has velocity zero. However, this does not mean that the top of the fluid

blob has zero velocity. The top of the fluid blob will have some velocity due to the deformations

induced by the shear stresses acting on the top of the blob. The blob will look as though it is being

stretched in the direction of the shearing. This is illustrated in Figure(3.2).

Figure 3.2: Shear-stress acting on fluid parcel near a boundary.

If we try to quantify the shear-stress on the fluid blob in the above picture, we note that

shear-stress is defined as a force per unit area. Say the fluid blob in the above diagram has a density

of ρ, the shear-stress, τ , is

τ = ρν
∂vx
∂y

, (3.6)

where ∂vx
∂y describes the change in the x component of velocity with respect to the coordinate y and

ν is a parameter called the kinematic viscosity. We now note that if the blob was not against the

boundary but in the middle of the flow, the blob would still experience shear-stress, and if the flow

is not unidirectional, there will be shear-stresses in the y direction as well. In 2 dimensions, the

shear-stress on a fluid blob is

τxy = ρν

(
∂vx
∂y

+
∂vy
∂x

)
. (3.7)

Note in 3 dimensions, the quantitative definition of shear-stress follows analogously.

This shear-stress term gives rise to the tangential force term in the conversation of momentum
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equation. We can write this force as,

Ftangential = Fshear =

(
∂τij
∂xj

)
(ρδV ) =

∂

∂xj

[
ρν

(
∂vi
∂xj

+
∂vj
∂xi

)]
(δV ), (3.8)

for i, j = {x, y, z}.

We can mathematically massage the force term due to the shear-stress to get a more compact

form because we assume the fluid is incompressible. Note that the incompressibility condition gives

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0.

Using this fact we see that

∂

∂xj

[(
∂vi
∂xj

+
∂vj
∂xi

)]
=

[
∂2ux
∂y2

+
∂2ux
∂z2

]
î+

[
∂2uy
∂x2

+
∂2uy
∂z2

]
ĵ +

[
∂2uz
∂x2

+
∂2uz
∂y2

]
k̂.

Hence we get that (
∂τij
∂xj

)
= ∇2v = ∆v.

Therefore our statement about the conversation of momentum of a fluid is now,

(ρδV )

[
∂v

∂t
+ (v · ∇)v

]
= −∇p (δV ) + µ(δV )∆v + Fext, (3.9)

where µ = ν
ρ and is called the dynamic viscosity. The differences between kinematic and dynamic

are subtle, but important. Dynamic viscosity describes the tangential force per unit area required to

move one plane with respect to another tangential plane at a unit velocity while maintaining a unit

distance apart in the fluid. On the other hand, kinematic viscosity is the ratio of dynamic viscosity

to the fluid density, ρ, and no force is involved.

External Forces:

There can be different kinds of external forces being applied to the fluid. We will break

these external forces down into two types, forces induced by conservative fields and fluid-structure

interaction forces.
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Now suppose there are external body forces acting on the cubic blob through a background

field, e.g., electromagnetic or gravitational forces. These forces can be spatially dependent forces.

Regardless of these forces’s identity, we will define their potential per unit mass that generalizes their

contributions, and call it φ. (Here we assuming under the rug that these forces are conservative).

From field theory we note that from a potential field, we can define a force as F = −∇φ.

Furthermore we can also have forces arising from fluid-structure interaction terms, e.g., a de-

formed elastic structure immersed in a fluid that wishes to return to it’s lower energy state. We will

call these forces Fbody for now.

Therefore the from Newton’s 2nd Law, we find that force on the parcel is

(ρδV )
Dv

Dt
= −(δV )∇p+ µ(δV )∆v − (ρδV )∇φ+ (ρδV )Fbody, (3.10)

Dividing by the volume of the parcel, δV , and spatially- and time-dependent density, ρ, we get

that the acceleration on the cubic blob will be

Dv

Dt
=
∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∆v −∇φ + fbody. (3.11)

We will discuss the fluid-structure interaction terms when we introduce the immersed boundary

method in Section()

Conservation of Mass Beyond conversation of momentum, physical systems also need to conserve

mass. This can be summarized by the simple analogy of water flowing through a hose.

Now since you’re a human, you’ve probably dreamt about being a fireman at some point in your

life, if not, you know how much fun it is to spray stuff with a hose. Imagine if you take a hose, turn

it on and decide to spray your driveway with it. You begin to think about the conservation of mass

because, hey you’re a scientist after-all. You know generally this type of conservation of mass can be

summed up as, “what goes out, must come in." Hence the fluid coming out of the end of the hose

can be written as ∫
S

(ρv) · dA =

∫
V

(∇ · (ρv)) dΩ,
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using the Divergence Theorem. We then note that this flow of the fluid can cause a change in density,

so we have,
∂

∂t

∫
V
ρ dΩ =

∫
V

∂ρ

∂t
dΩ.

Hence putting these together, we find the continuity equation for mass in fluid dynamics can be

written as, ∫
V

[
∇ · (ρv)

]
dΩ = −

∫
V

∂ρ

∂t
dΩ,

or more explicitly as
∂ρ

∂t
+∇ · (ρv) = 0, (3.12)

or
∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0. (3.13)

We note that since we have focused our discussion incompressible fluids, we assume the fluid is

incompressible, that is, the density of a fluid parcel is constant that moves with the flow velocity.

Hence our statement about the conservation of mass in fluids becomes

∇ · v = 0. (3.14)

3.1.2 Navier-Stokes Equations

From our derivations above, we found the governing equations of fluid dynamics given in (3.11)

and (3.13). For the remainder of our studies we will consider only the incompressible Navier-Stokes

equations and external forces arising only from interactions with an immersed boundary, e.g., φ = 0.

Hence the version of the Navier-Stokes equations we concern ourselves with are

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∆v + fbody (3.15)

∇ · v = 0. (3.16)
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3.1.3 Vorticity Formulation

Recall our statement of the conservation of momentum for a fluid (3.13),

Dv

Dt
=
∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∆v −∇φ + fbody.

Without loss of generality, suppose that there are no external forces acting on the fluid, i.e.,

fbody = 0 and ∇φ = 0. We recall the following identity from vector calculus,

(F · ∇)F = (∇× F)× F +
1

2
∇(F · F).

Substituting the above identity into the conservation of momentum equation gives us,

∂v

∂t
+ (∇× v)× v +

1

2
∇(v · v) = −1

ρ
∇p+ ν∆v. (3.17)

We define a new quantity called the vorticity,

ω = ∇× v. (3.18)

It is tempting to think that ω describes the global rotation of the fluid, but this is misleading.

Although many flows can be characterized by local regions of intense rotation, such as smoke rings,

whirlpools, tornadoes, or even the red spot on jupiter, some flows have no global rotation, but do

have vorticity. Vorticity describes the local spinning of a fluid near a fixed point, as seen by an

observer in the Eulerian framework. Examples of velocity field, where there is and is not vorticity

are illustrated in Figure(3.3).

The three examples in Figure(3.3) include rigid body-like rotation (vαr), parallel shear flow, and

irrotational vortical flow (vα1
r ). Row 2 of the table shows the global velocity field in each case, while

row 3 depicts the absolute velocities around a fluid parcel at specific locations, specified by the red

dot, in the velocity field. Row 4 shows the local relative velocities around the same fluid blobs. In

the cases of rigid body-like rotation and parallel shear flow there is nonzero vorticity, while in the

case of irrotational vortical, there is no vorticity.
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Figure 3.3: Cartoon depictions for the vorticity of fluid parcels. Vorticity is a measure of the local
rotation of a fluid blob, not of the global continuum, as illustrated in these examples. The three
examples include rigid body-like rotation (vαr), parallel shear flow, and irrotational vortical flow
(vα1

r ). Row 2 of the table shows the global velocity field in each case, while row 3 depicts the absolute
velocities around a fluid parcel at specific locations, specified by the red dot, in the velocity field.
Row 4 shows the local relative velocities around the same fluid blobs. In the cases of rigid body-like
rotation and parallel shear flow there is nonzero vorticity, while in the case of irrotational vortical,
there is no vorticity.

Substituting the definition of vorticity into (3.17), we obtain

∂v

∂t
+ ω × v +

1

2
∇(v2) = −1

ρ
∇p+ ν∆v.

Now taking the curl of the above equation we get an equation for the evolution of the vorticity,

∂ω

∂t
+∇× (ω × v) = ν∆ω, (3.19)
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since ∇× (∆v) = ∆(∇× v) = ∆ω.

Furthermore we note that the pressure terms drop out because the force from pressure acts

perpendicular to the surface of the fluid blobs and not parallel to it, i.e., ∇ × (∇ψ) = 0 for any

vector field ψ

We also note that in the case, where shear-stress and all external forces are absent, that if ω = 0

everywhere at any particular point in time, then ω = 0 for any time in the future. Hence we would

call the fluid irrotational in this case, having ω = ∇× v = 0.

3.1.4 Mathematical derivation of the Navier-Stokes Equations

In this subsection we will introduce the governing equations of fluid dynamics using a more

mathematical approach. We will begin with the statement and proof of the transport theorem. Next

for each equation, momentum and mass, we will start with a statement of conservation of momentum

or mass of a continuum, and apply the transport theorem. As we will see, the Navier-Stokes equations

include an equation stating the conservation of momentum of the fluid and an equation giving the

conservation of mass of a fluid.

Figure 3.4: Initial domain, W , at t = 0 being mapped by X into X (W , t) at t > 0

Transport Theorem Consider a continuum, e.g., a domain of fluid, W . This domain at time

t = 0 is shown in Figure3.4. Overtime this domain is thought to change shape, but not topology.

Consider a particle trajectory from α to a point later in time, X (α, t) for t > 0. Hence we consider

the change of shape as the continuous map, X , i.e., W → X (W , t). Writing out the particle

trajectory explicitly, we have
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dX
dt = v (X (α, t), t)

X (α, 0) = α.
(3.20)

The map v we consider to be the velocity of the changing continuum, e.g., the fluid velocity. We

will now introduce the Transport Theorem.

Theorem 1. The Transport Theorem states that for any function of x and t, we have

d

dt

∫
Wt

f(x, t)dV =

∫
Wt

(
∂f

∂t

)
dV −

∮
∂Wt

(v · n̂)f(x, t)dA =

∫
Wt

(
∂f

∂t
+∇ · (vf)

)
dV

Note that the above theorem is a higher dimensional case of differentiating under an integral

sign, i.e., the Leibniz integral rule. If f(x, t) = f(x, t) and Wt = [a(t), b(t)], then the following is true

d

dt

∫ b(t)

a(t)
f(x, t)dx = f(b(t), t)b′(t)− f(a(t), t)a′(t) +

∫ b(t)

a(t)

∂

∂t
f(x, t)dx,

and can be proved using the Fundamental Theorem of Calculus. We will now prove the result

for the Transport Theorem.

Proof. To begin this proof, we consider a material volume, W (t), which contains moving fluid blobs.

The volume is then bounded by its surface, ∂W (t). We first consider the volume integration of a

quantity φ, e.g., ∫
W (t)

φ(x, t)dV,

and consider that quantitiy sometime later, at t+ dt,

∫
W (t+dt)

φ(x, t+ dt)dV.

Using Taylor Series, we see that this can be written as

∫
W (t+dt)

φ(x, t+ dt)dV =

∫
W (t+dt)

[
φ(x, t) +

∂φ

∂t
dt+O(dt2)

]
dV. (3.21)

Note however that as W (t) changes the shape, the surface ∂W (t) will also change. The Volume
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change in W (t) corresponds the surface element

surface element due to changing volume = φv · n̂dSdt,

where v is the underlying velocity vector field and n̂ is the normal vector to the surface. The

volume change’s influence of quantity φ from W (t) to W (t+ dt) can then be decomposed into

∫
W (t+dt)

φ(x, t+ dt)dV =

∫
W (t)

φ(x, t+ dt)dV +

∫
∂W (t)

φ(x, t+ dt)v · n̂ dV dt.

Using (3.21) we have

∫
W (t+dt)

φ(x, t+ dt)dV =

∫
W (t)

[
φ(x, t) +

∂φ

∂t
dt+O(dt2)

]
dV+∫

∂W (t)

[
φ(x, t) +

∂φ

∂t
dt+O(dt2)

]
v · n̂ dV dt (3.22)

=

∫
W (t)

φ(x, t)dV +

[∫
W (t)

∂φ

∂t
dV +

∫
∂W (t)

φ(v, t)(v · n̂)dS

]
dt+O(dt2).

(3.23)

Rearranging the terms in (3.23), we obtain

∫
W (t+dt)

φ(x, t+ dt)dV −
∫
W (t)

φ(x, t)dV =

[∫
W (t)

∂φ

∂t
dV +

∫
∂W (t)

φ(v, t)(v · n̂)dS

]
dt+O(dt2).

(3.24)

Next by imploring the divergence theorem on the surface integral and dividing by the infinitesimal

dt, we get

∫
W (t+dt) φ(x, t+ dt)dV −

∫
W (t) φ(x, t)dV

dt
=

∫
W (t)

[
∂φ

∂t
+∇ · (vφ)

]
dV +O(dt). (3.25)

Finally taking the limit as dt→ 0, we obtain the desired result

d

dt

∫
W (t)

φ(x, t)dV =

∫
W (t)

[
∂φ

∂t
+∇ · (vφ)

]
dV. (3.26)
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We will now use Theorem 1 to derive the governing equations of fluid dynamics.

Mathematical formulation of mass equation For a control volume, we can find its mass by

integrating the density over such a volume, i.e.,

mass =

∫
X (W,t)

ρ(x, t)dx.

From conservation of mass, it is understood that mass is neither created nor destroyed, hence we

have

d

dt
(mass) =

d

dt

∫
X (W,t)

ρ(x, t)dx = 0.

We can now apply the Transport Theorem to obtain

d

dt

∫
X (W,t)

ρ(x, t)dx =

∫
X (W,t)

[
∂ρ

∂t
+∇ · (vρ)

]
dx = 0.

Note the following property. For all open sets Ω, if
∫

Ω g(x)dx = 0, then g(x) = 0.

Using the above property, this implies that

∂ρ

∂t
+∇ · (vρ) = 0. (3.27)

(3.27) is the general statement of the conservation of mass for a fluid. No assumptions have been

made about the fluid at this junction, e.g., we have not said if it is incompressible, viscoelastic, etc.

However, for our modeling, we will only consider an incompressible fluid, that is, we are assuming

the fluid density is constant. This gives us:

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = ρ∇ · v = 0,

since ∂ρ
∂t = and ∇ρ = 0. Hence we have that

∇ · v = 0. (3.28)
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(3.28) is the incompressibility condition. We note that this implies the fluid velocity is divergence-

free. That is, there are no sources or sinks within the continuum.

Mathematical formulation of momentum equation Here we will perform the same steps as

we did to find the incompressibility condition. First we compute the momentum in our control

volume,

momentum in control volume =

∫
X (W,t)

ρv(x, t)dx.

Next we will essentially take the time derivative of the above statement; however, conservation of

momentum dictates the rate of change of momentum is balanced by the forces acting on the control

volume and not nullity. Hence we have the following statement

d

dt

∫
X (W,t)

ρv(x, t)dx =

∫
∂X (W,t)

“forces (stresses) acting on the surface of control volume"dS.

If we define σ to be a stress tensor, where each component has the units of a force per unit area,

we can rewrite the above as

d

dt

∫
X (W,t)

ρv(x, t)dx =

∫
∂X (W,t)

σ · n̂dS.

Application of the divergence theorem, gives

d

dt

∫
X (W,t)

ρv(x, t)dx =

∫
X (W,t)

(∇ · σ)dx.

We will discuss the stress tensor, σ, in a moment. Now we apply the Transport Theorem onto

the LHS of the above equation to get

d

dt

∫
X (W,t)

ρv(x, t)dx =

∫
X (W,t)

ρ

[
∂v

∂t
+ v · ∇v

]
dx.

To see this we will consider the ith component and apply the Transport Theorem.
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Proof.

[
d

dt

∫
X (W,t)

ρv(x, t)dx

]
i

=

∫
X (W,t)

[
∂

∂t
(ρui) +∇ · (vρui)

]
dx

=

∫
X (W,t)

[
ui
∂ρ

∂t
+ ρ

∂ui
∂t

+ ui∇ · (uρ) + ρu · ∇ui
]
dx

=

∫
X (W,t)

[
ρ
∂ui
∂t

+ ρu · ∇ui
]
dx.

The last equality holds true from (3.27), the general statement of the conservation of mass of a fluid.

Hence going back from component to vector form, we have

d

dt

∫
X (W,t)

ρv(x, t)dx =

∫
X (W,t)

ρ

[
∂v

∂t
+ v · ∇v

]
dx.

Now our general statement for the conservation of momentum for a fluid currently is in the form

of ∫
X (W,t)

ρ

[
∂u

∂t
+ u · ∇u

]
dx =

∫
X (W,t)

(∇ · σ)dx.

Note that we are only considering forces from the fluid acting upon the fluid. That is, we are not

considering external body forces. We will now briefly focus our attention on the stress tensor, σ.

The stress tensor, σ, is traditionally written in the following form,

σ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 ,

where the diagonal entries, {σii}, describe pressure stresses and the off diagonal terms, {τjk} with

j 6= k, describe the shear-stresses. Intuitively the pressure and shearing stresses are separated into

two components,

σ = −pI + τ, (3.29)
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where p is the pressure, I is the identity matrix, and τ contains the shear-stress terms. If you imagine

an infinitesimal square sub-domain of the control volume, then each component of τ , {τjk}, gives

the shear-stress on face j in direction k. Furthermore, we have τjk = τkj by symmetry arising from

the conservation of angular momentum.

Hence we now have the following statement regarding the conservation of momentum of a fluid,

∫
X (W,t)

ρ

[
∂u

∂t
+ u · ∇u

]
dx =

∫
X (W,t)

(∇ · (−pI + τ))dx,

and therefore we get

ρ

[
∂u

∂t
+ u · ∇u

]
= ∇ · (−pI + τ),

and then simplifying

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+∇ · τ. (3.30)

Eq.(3.30) is the general statement regarding the conservation of momentum of a fluid and can

be thought of as a general Navier-Stokes equation. No assumptions about whether the fluid is

incompressible, viscoelastic, etc. were made. However, we will now assume the fluid is Newtonian

and incompressible for the remainder of our studies.

A Newtonian fluid models a fluid in which its shearing is linearly proportional the gradient of

velocity, i.e., all local viscous stresses are linearly proportional to the local strain-rates (deformations)

within the fluid. This can be written as

τ = µ
[
∇u + (∇u)T

]
, (3.31)

where mu is a proportionality constant. Note that mu is also the dynamic viscosity of the fluid.

If we define the components of u as u = (u, v, w), then can write τ as

τ = µ


2∂u∂x

∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x

∂u
∂y + ∂v

∂x 2∂v∂y
∂v
∂z + ∂w

∂y

∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y 2∂w∂z

 . (3.32)

77



Finally we compute ∇ · τ , by first considering only the 1st component, i.e.,

1

µ
(∇ · τ)1 =

∂

∂x

(
2
∂u

∂x

)
+

∂

∂x

(
∂u

∂y
+
∂v

∂x

)
+

∂

∂x

(
∂u

∂z
+
∂w

∂x

)
= 2uxx + uyy + vxy + uzz + wxz

= (uxx + uyy + uzz) + (uxx + vxy + wxz)

= ∆u+
∂

∂x
(∇ · u)

= ∆u.

Note that ∇ · u = 0 by assuming the fluid is incompressible. Now if we had done this for the

other components, we will find that

∇ · τ = µ∆u. (3.33)

Hence we find the incompressible, Navier-Stokes equations,

ρ
[∂u
∂t

+ u · ∇u
]

= −∇p+ µ∆u (3.34)

∇ · u = 0. (3.35)

From these derivations it is clear we have made two modeling assumptions about the fluid,

namely that the fluid is

1. Incompressible, e.g., the fluid has constant density

2. Newtonian, e.g., stress is linearly proportional to the shear rate.

If we wished to model the fluid with other properties, such as viscoelasticity, we would have to

revisit (3.27) and (3.30) and make appropriate assumptions.

3.2 Non-dimensional quantities of interest

In this section we will discuss two non-dimensional quantities, the Reynolds Number, Re, and the

Womersley Number, Wo. Non-dimensional quantities are very important in mathematical modeling

as they allow to study a system’s dynamical evolution, bifurcations, and overall properties at scales

that are more accessible to manage in laboratory physical models or computationally.
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Let’s look at a quick example using damped harmonic oscillators.

3.2.1 Example: Damped Harmonic Oscillator

The equations of motion for a damped harmonic oscillator is the following,

mẍ+ bẋ+ kx = 0, (3.36)

where x is the displacement from the mass’ equilibrium position, k is the spring stiffness coefficient,

and b is the damping coefficient. We note in this example there are no external forces present, since

the equation is homogeneous.

To non-dimensionalize this system, we take

x = xcX and t = tcτ,

where xc and tc hold the units of length and time respectively, while X and τ are the non-dimensional

quantities. Substituting these definitions into (3.36), we obtain

mxc
t2c

Ẍ +
bxc
tc

Ẋ + kxcX = 0. (3.37)

Next we divide the equation by the leading coefficients on the second-order term,

Ẍ + tc
b

m
Ẋ + t2c

k

m
X = 0. (3.38)

We now make the choice to normalize the coefficient on the linear term, X, hence we let

tc =

√
m

k
. (3.39)

The governing system now becomes,

Ẍ +
b√
mk

Ẋ + X = 0. (3.40)
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Finally, we call the remaining coefficient on the first-order term,

2ζ =
b√
mk

. (3.41)

The reason for the factor of 2 is purely aesthetic and arbitrary; it will later allow us to parameterize

solutions in terms of ζ solely. Hence the non-dimensional form of the damped harmonic oscillator is,

Ẍ + 2ζẊ + X = 0, (3.42)

where we have made the assumptions that ζ = b
2
√
mk

and tc =
√

m
k .

To solve (3.42), we make the ansatz that we will have solutions of the form

X = eλt,

since it is a second-order, linear, constant-coefficient ordinary differential equation. Substituting

this ansatz into (3.42), we find

eλt(λ2 + 2ζλ+ 1) = 0,

and then solving for λ, we obtain

λ = −ζ ±
√
ζ2 − 1 (3.43)

We now have the following three possible branches:

1. Overdamped : ζ > 1 We now have two distinct eigenvalues of our differential operator, giving

us the following transient solution,

X(t) = c1e
τ
√
ζ2−1 + c2e

−τ
√
ζ2−1.

2. Critically damped : ζ = 1 We now only have one distinct eigenvalue of our differential operator.

Hence at this stage, we have one transient solution, X1(t) = c3e
−τ . However, we will also have

a resonant eigenfunction, X2(t) = c4τe
−τ . Therefore our transient solution for this critically
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damped case is

X(t) = (c3 + τc4)e−τ .

3. Under damped : ζ < 1 We have two distinct eigenvalues of our differential operator; however,

they are both complex with nonzero imaginary part. This is not an issue as our transient

solutions can be written as

X(t) = c̃5e
−(τ+
√

1−ζ2) + c̃6e
−(τ−
√

1−ζ2),

or equivalently, using some algebraic sorcery,

X(t) = e−τ
[
c5 cos(τ

√
1− ζ2) + c6 sin(τ

√
1− ζ2)

]
.

Hence we found there are three regimes for the damped harmonic oscillator system - overdamped,

underdamped, and critically damped. Moreover, we were able to discern when such bifurcation would

occur by using non-dimensionalization, giving rise to a natural non-dimensionalization quantity, ζ,

we can quantify the transient solution regimes by. We note that the quantity, ζ is sometimes referred

to as the damping ratio, which is heavily used by the engineering community to model decaying

oscillations in a system after undergoing a perturbation.

We will now introduce two non-dimensional quantities used to model the hemodynamics in heart

morphogenesis.

3.2.2 The Reynolds Number and Different Fluid Regimes

Quite possibly, the most heavily used metric for quantifying different fluid regimes is given by

the non-dimensionalization parameter the Reynolds Number, Re. We will briefly give its derivation,

via non-dimensionalizing the Navier-Stokes equations (3.11). For our purposes in this section, we

will assume there is no external body force, i.e., fext = 0 and −∇φ = fbody = 0, exerted on the fluid.

Therefore we start with the following traditional form of the Navier-Stokes equation,

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+

µ

ρ
∆v. (3.44)
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Next we assume the following non-dimensionalization,

x = Lx̃ v = U ṽ t =
L

U
t̃ p = ρU2p̃, (3.45)

where L and U are characteristic length scale and characteristic velocity of the system. We

note that the choice of L and U are heavily dependent upon the geometry of the problem and

are important to specify, as different people may choose these quantities differently. Hence it is

important to be consistent and also declare how they are chosen.

Before substituting these non-dimensional definitions, we must also non-dimensionalize the

differential operators. Consider the following spatial variable’s non-dimensionalize as described

above, x = Lx̃, e.g., x = (x,y, z) = L(x̃, ỹ, z̃). Hence

x = Lx̃ ⇒ dx = Ldx̃,

and therefore
dx̃

dx
=

1

L
.

Hence the dimensionless operator becomes

d

dx
=
dx̃

dx

d

dx̃
=

1

L

d

dx̃
. (3.46)

Using (3.46), we can the following non-dimensional forms of the gradient operator, ∇, and

Laplacian operator, ∆, analogously,

∇ =
1

L
∇̃ (3.47)

∆ =
1

L2
∆̃. (3.48)

Furthermore, the time differential operator, ∂
∂t , gets non-dimensionalized similarly to (3.46), i.e.,

∂

∂t
=
L

U

∂

∂t̃
. (3.49)
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Substituting (3.45), (3.47), (3.48), and (3.49) into (3.44) we obtain,

U2

L

∂ṽ

∂t̃
+ (ṽ · ∇̃)ṽ = −ρU

2

ρ
∇̃p̃+

µU

ρL2
∆̃ṽ. (3.50)

Dividing both sides by the coefficient on the material derivative, gives

∂ṽ

∂t̃
+ (ṽ · ∇̃)ṽ = −∇̃p̃+

µ

ρUL
∆̃ṽ. (3.51)

Note that there is only one unique parameter ratio left, i.e, µ
ρUL . This quantity is the reciprocal

of the Reynolds Number, e.g.,

Re =
ρUL

µ
, (3.52)

and finally the traditional Navier-Stokes equations can be written,

∂ṽ

∂t̃
+ (ṽ · ∇̃)ṽ = −∇̃p̃+

1

Re
∆̃ṽ (3.53)

We note that Re was first introduced by George Stokes in 1851, but it was later popularized by

Osborne Reynolds 30 years later. It has since been historically known by Reynolds contribution,

rather than Stokes [136]. The Re describes the ratio of inertial forces to viscous forces. If inertial

forces dominate, Re >> 1; however if viscous forces dominate, Re << 1, and if they are comparable,

i.e., O(0.01) ≤ Re ≤ O(100), we say this is the intermediate Re range. Furthermore if viscous

forces dominate to the extent that virtually Re = 0, we call this the Stokes regime and it is time

independent.s

Once transformed into the non-dimensional Navier-Stokes form, it is clear that once characteristic

length scales, characteristic velocity scales, and fluid properties, i.e., density and dynamic viscosity,

are selected, the problem is now set at a particular Re. Hence in the broad sense all incompressible

flows with the same Re will be comparable. We note this also assumes that the fluid is Newtonian,

i.e., meaning that the shear rate is not linearly proportional to the shear stress exerted on the fluid.

From (3.53), we see that in the limit as Re→∞, the fluid becomes inviscid, meaning that the

viscous terms are negligible. Looking at the form of Re, this can be equated to either the viscosity

going to zero or velocity going to zero, since we expect the characteristic length not to infinite, nor
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the density of fluid to be infinite. Furthermore neglecting the viscous term in (3.53), gives rise to

the governing equation of inviscid flow known as the Euler equation,

∂ṽ

∂t̃
+ (ṽ · ∇̃)ṽ = −∇̃p̃. (3.54)

Also, (3.54) does an adequate job modeling inviscid flow fields; however, viscous forces must be

considered when modeling fluid flow near a boundary. This is because of the presence of boundary

layers, which form for even the modest amount of viscosity, like in air. Moreover, in turbulent flows,

such as those synonymous with high Re, energy dissipation takes place through the fluid’s viscosity

on the microscales, and hence must be considered.

Example: Flow Past A Cylinder One of the most standard examples illustrating different fluid

regimes, quantified by Re, is the problem of flow past a cylinder. Imagine a fixed cylinder in a flow

tank, undergoing flow moving left to right. The inflow velocity is given by V , the diameter of the

cylinder, d, and the fluid is homogeneous, i.e., constant density and viscosity. Re for this problem is

defined by such parameters.

One can modify the Re in this system experimentally by keeping the fluid static and by changing

the inflow velocity, or in numerical simulations by changing the dynamic viscosity. We note that in

principle you could change any of the parameters to change Re but by only changing the dynamic

viscosity in numerical simulations keeps the Strouhal Number constant for the system. Ideally in

laboratory experiments, one would try to keep the Strouhal Number constant when varying Re but

it is more difficult to change properties of the fluid in many cases. The Strouhal Number, St, which

is also a non-dimensional quantity, is given by

St =
fL

U
, (3.55)

and describes systems with oscillating flow, hence the frequency parameter, f , in its definition.

Lastly we note that f is usually associated with a frequency of shedding vortices in many systems.

For Re < 5, flow is unseparated and moves around the cylinder. For 5 < Re < 15 symmetric

vortices begin to form on the trailing edge of the cylinder. Once 40 < Re < 150, vortices sheets

begin to be shed off the cylinder. For 150 < Re < 3× 105, the vortex sheets transition to turbulent
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vortical flow. At Re higher than 350, 000, the laminar boundary layer undergoes a transition to

turbulent and the wake behind the cylinder becomes more narrow and more disorganized. For high

enough Re (∼ 3, 500, 000) there is a transition back to a turbulent vortex sheet. These regimes are

illustrated in Figure(3.5), which is adapted from Thermopedia.com.

Figure 3.5: Flow past a fixed cylinder at different Reynolds Numbers, illustrating different regimes
in the fluid flow. In these examples, the characteristic length is given by the diameter of the cylinder
and velocity is given by the inflow velocity. For Re < 5, flow is unseparated and moves around the
cylinder. For 5 < Re < 15 symmetric vortices begin to form on the trailing edge of the cylinder.
Once 40 < Re < 150, vortices sheets begin to be shed off the cylinder. For 150 < Re < 3× 105, the
vortex sheets transition to turbulent vortical flow. At Re higher than that, the laminar boundary
layer undergoes a transition to turbulent and the wake behind the cylinder becomes more narrow
and more disorganized. For high enough Re (∼ 3, 500, 000) there is a transition back to a turbulent
vortex sheet. Image courtesy of Thermopedia.com

We briefly mention a quote that arose when the late great German physicist Werner Heisenberg

was asked what he would ever ask a deity. "When I meet God, I am going to ask him two questions:

Why relativity? And why turbulence? I really believe he will have an answer for the first." Although

this quote is also attributed to Horace Lamb [137].

However, although many biological systems do in fact live in the regime of turbulent fluid flows
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or at least Re > 1000, e.g., aortic blood flow, swimming and flying in large fish and birds, etc., many

interesting biological organisms operate at lower and modest Re ranges. For example some of the

tiniest insects, e.g., thrips, fly at Re ∼ 10; some jellyfish swim at Re ∼ 100, e.g., Aurelia (moon

jellyfish). For our considerations of the hemodynamics involved in heart morphogenesis, the Re can

fall between Re ∼ [0.01, 100]. It should be noted that these Re are also for specified characteristic

length and velocity scales. For various organ systems of differing species, their Re and characteristic

length scales, D, can be seen in Figure(3.6), which is adapted from [21].

Figure 3.6: Organ systems for various species of organisms, plotted to show where they fall on the
axis given by a characteristic length scale, the vertical axis, and Re, shown on the horizontal axis.
The embryonic human heart is shown as Re ∼ 0.05 with characteristic length of D ∼ 2.5× 10−4.

3.2.3 The Womersley Number

Besides the Reynolds Number and Strouhal Number, there are other useful nondimensional

parameters in biological fluid dynamics, one being the Womersley Number. The Womersley Number,

Wo, is a “close cousin" of Re, with the difference being that Wo describes the ratio of pulsatile

inertial forces to viscous forces.

To derive Wo, we begin by considering the Navier-Stokes equations in a rigid tube in cylindrical

coordinates. To simplify matters more, we consider axisymmetric flow, where v = uêr + vêz.
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Eq.(3.44) then becomes

∂u

∂t
+ u

∂u

∂r
+ v

∂u

∂z
= −1

ρ

∂p

∂r
+
µ

ρ

[
1

r

∂

∂r

(
r
∂u

∂r

)
− u

r2
+
∂2u

∂z2

]
(3.56)

∂v

∂t
+ u

∂v

∂r
+ v

∂v

∂z
= −1

ρ

∂p

∂z
+
µ

ρ

[
1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2

]
, (3.57)

with the incompressibility condition (3.14) becoming

∇ · v =
1

r

∂

∂r

(
ru) +

∂v

∂z
= 0. (3.58)

Now we assume zero radial flow, i.e., u = 0. Substituting this into (3.58), (3.56), and (3.57), we

find the system of equations simplifies to

∂v

∂z
= 0 (incompressibility) (3.59)

∂p

∂r
= 0 (radial comp. of Navier-Stokes) (3.60)

∂v

∂t
= −1

ρ

∂p

∂z
+
µ

ρ

[
1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2

]
(z axis comp. of Navier-Stokes). (3.61)

Next we consider harmonic solutions for the pressure and velocity, i.e.,

p = p0 + p(z)eiωt and v = v(r)eiωt, (3.62)

where p0 is constant. Substituting (3.62) into (3.59), (3.60), and (3.61), we obtain

∂v

∂z
= 0 (3.63)

iωv(r)eiωt = −1

ρ

∂p

∂z
eiωt +

µ

ρ

1

r

∂

∂r

(
r
∂v

∂r

)
eiωt. (3.64)

Now we will begin the non-dimensionalization procedure. We define

r = Lrr̃ z = Lz z̃ t = ω̄t̃ p = P p̃ u = Uũ, (3.65)

as the non-dimensional parameters, where Lr, Lz, ω̄, P , and U are the characteristic radial length

scale, longitudinal length scale, angular frequency, pressure, and velocity respectively. Substituting
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these definitions into (3.63) and (3.64), we find

∂ṽ

∂z̃
= 0 (3.66)

iṽ = − P

ρω̄U

∂p̃

∂z̃
+

µ

L2
rρω

1

r̃

∂

∂r̃

(
r̃
∂ṽ

∂r̃

)
(3.67)

We define the Womersley Number, Wo, as the square root of the coefficient on the viscous term,

e.g.,

Wo2 = L2
r

ρω

µ
, (3.68)

where Lr, ρ, ω, and µ are the characteristic length, density, pulsation angular frequency, and

dynamic viscosity. Eq.(3.67) now becomes,

iṽ = − P

ρω̄U

∂p̃

∂z̃
+

1

Wo2

1

r̃

∂

∂r̃

(
r̃
∂ṽ

∂r̃

)
. (3.69)

Eq.(3.69) has an analytic solution given in terms of Bessel functions of order zero [122], i.e.,

ṽ = i
P

ρωU

∂p̃

∂z̃

(
1− J0(r̃Wo i3/2)

J0(Wo i3/2)

)
. (3.70)

Like Re, varying Wo can drastically change fluid regimes. Unsteady effects are significant for

Wo > 1 and are negligible for Wo < 1. Furthermore, Wo can be related to Re by careful selection

of characteristic velocity, i.e., if it is chosen to correspond to the oscillating structure, U = ωLr.

Hence we find that Wo ≈ Re in this case[20].

For this example of tubular flow, velocity profiles at t = 0 are shown for varyingWo in Figure(3.7).

For small Wo, Poiseuille flow is obtained, while for large values of Wo, the velocity profile becomes

flat. This figure is adapted from [31].

3.3 The Immersed Boundary Method (IB)

In this section we will present an introduction to the numerical that we use to solve the coupled

fluid-structure interaction problem (FSI) called the immersed boundary method. We will begin by

giving a general overview of the immersed boundary method and then an in-depth description of the

software, IB2d [37]. Finally we will give an overview of IBAMR, which is Boyce Griffith’s open source
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Figure 3.7: Velocity profiles at t = 0 are shown for varying Wo. For small Wo, Poiseuille flow is
obtained, while for large values of Wo, the velocity profile becomes flat. This figure is adapted from
[31].

immersed boundary code, which is an adaptive and distributed-memory parallel implementation of

IB [138].

The development of fluid-structure interaction (FSI) software involves trade-offs between ease

of use, generality, performance, and cost. Typically there are large learning curves when using

low-level software to model the interaction of an elastic structure immersed in a uniform density

fluid. Many existing codes are not publicly available, and the commercial software that exists

usually requires expensive licenses and may not be as robust or allow the necessary flexibility that

in house codes can provide. We present an open source immersed boundary software package,

IB2d, with full implementations in both MATLAB and Python, that is capable of running a vast

range of biomechanics models and is accessible to scientists who have experience in high-level

programming environments. IB2d contains numerous options for constructing material properties

of the fiber structure, as well as the advection-diffusion of a chemical gradient, muscle mechanics

models, electrophysiology, and artificial forcing to drive boundaries with a preferred motion.
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3.3.1 Introduction to IB

Fully coupled fluid-structure interaction problems is a rapidly growing discipline across all the

sciences, ranging from engineering to biology [139]. Fully coupled FSI is different from models in

which the motion or bending of a structure is prescribed. The action of the aortic valve is a good

example of fully coupled FSI, since the motion of the valve is governed by the motion of the fluid,

and in turn, the valve alters the underlying blood flow. Note that in a fully coupled simulation, the

movement of the valve would not be prescribed.

The immersed boundary (IB) framework was first published in 1972 to study blood flow around

valve leaflets of the heart by Charles Peskin [124]. It has been applied to a plethora of biomechanics

problems which involve the interaction of a flexible structure immersed in a viscous, incompressible

fluid. The method has been successfully applied to study fluid dynamics in a variety of biological

settings within the intermediate Reynolds number range, defined here as 0.01 < Re < 1000, where

Re =
ρLV

µ
. (3.71)

µ and ρ are the dynamic viscosity and density of the fluid, respectively, and L and V are a

characteristic length and velocity of the problem. Some of these applications include cardiovascular

dynamics [125, 32], aquatic locomotion [140, 141], insect flight [142, 143, 144], muscle-fluid-structure

interactions [145, 146, 147], and plant biomechanics [148].

The strength of this method is that it can be used to model fully coupled fluid-structure

interaction problems involving complicated time-dependent geometries using a regular fixed Cartesian

discretization of the fluid domain, while the elastic fibers describing the structure are discretized on

a Lagrangian mesh. The fluid and elastic fibers constitute a coupled system in which the structure

moves at the local fluid velocity and the structure applies a singular force to the fluid.

Beyond fully-coupled fluid-structure interaction models, many scientists have successfully coupled

other constitutive equations within the IB framework [149, 150, 145, 151, 152, 153, 22, 95]. For

example, in [150], Fogelson and Guy modeled platelets suspended in an incompressible fluid to

study blood clotting and included chemical reaction equations modeling the mechanisms for binding-

unbinding, platelet stimulus-response, and chemistry on the platelets surfaces. Moreover, in [145],

Tytell et al. incorporated calcium dynamics, which governed the muscle contraction dynamics that
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were responsible for force generation in a swimming lamprey.

Many implementations of the immersed boundary method (IBM) exist in compiled programming

languages, including a few open source and freely available packages, e.g., IBIS [154] and IBAMR

[138]. IBIS is IB software written in FORTRAN that includes its own graphical user interface,

ibisview, to visualize the simulations. IBAMR is an adaptive and parallelized implementation

of the IBM in C + +, with extensions to a hybrid implementation of IB which uses a finite

element discretization of the immersed structure [131]. It depends on many open source libraries,

including PETSc [155], SAMRAI [156], libMesh [157], and OpenMPI [158] which make it robust

and very efficient to run but at the cost of a steep learning curve for anyone inexperienced at high

performance computing. Moreover installation of IBAMR is non-trivial, as it requires installing the

above open source libraries and coupling them with the IBAMR framework. Furthermore, without

multi-processor computational resources available, IBAMR cannot run at its full potential.

IBAMR was developed for highly resolved computational grids and specifically designed to

include adaptive mesh refinement (AMR) capabilities. AMR allows for more computational speedup;

it dynamically adapts the computational grid for higher resolution near regions of interest, e.g.,

boundaries and regions of vorticity above a user-prescribed threshold, while solving at lower resolution

in other areas. Because of IBAMR’s AMR and parallelization capabilities, it can be used for 3D

applications unlike previous open source IB software, such as IBIS, which was strictly developed for

2D applications.

IBIS AND IBAMR, having been written in lower level programming languages, e.g., FORTRAN

and C + + respectively, require familiarity with these languages. For students and scientists

from disciplines that are not typically trained in rigorous programming, these languages are often

inaccessible and necessitate a steep learning curve.

Recently there have been a few open source 2D IB codes available on GitHub, such as matIB [159]

and pyIBM [160], which are a MATLAB and Python 3.5 implementation, respectively. Charlie Peskin

also has a MATLAB 2D IB implementation available on his website [161]. All these implementations

use the standard immersed boundary framework [162] but do not include a breadth of fiber models

or examples and are not as robust or efficient in comparison to their 3D counterparts, such as

IBAMR. However, implementations in these high-level programming languages offer many powerful

advantages, perhaps foremost being that they are more readable and familiar to a broad audience of
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scientists and engineers.

In this thesis, we present IBM software called IB2d with full implementations in both MATLAB

[163] and Python 3.5 [164] that is capable of modeling a broad array of problems in biomechanics

including (but not limited to) locomotion, physiological processes, and plant biomechanics. Even

for skilled programmers, IB2d represents a nice option for preliminary tests of new models. For

example, one may add new muscle models to the software quite easily for testing before attempting

an implementation in a more challenging software framework such as IBAMR.

IB2d is an extension of the preliminary code found in [146]. It extends the capabilities of this

code by introducing a full implementation in Python, numerous additions in functionality, such as

more fiber-structure modelling options, advection-diffusion, electrophysiology models, and artificial

forcing, as well as visualization output and data analysis options. The package also contains 50+

examples, which illustrate the breadth of the software.

3.3.2 IBM Framework

IB2d models fluid motion in two dimensions using the Navier-Stokes equations in Eulerian form,

given as

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + f(x, t) (3.72)

∇ · u(x, t) = 0, (3.73)

where u(x, t) = (u(x, t), v(x, t)) is the fluid velocity, p(x, t) is the pressure, and f(x, t) is the force

per unit volume (area in 2D) applied to the fluid by the immersed boundary. The independent

variables are the position, x = (x, y), and time, t. Eq.(3.72) is equivalent to the conservation of

momentum for a fluid, while Eq.(3.73) is the condition mandating that the fluid is incompressible.

IB2d also assumes a periodic and square fluid domain. Future implementations will incorporate

non-square domains as well as the inclusion of a projection method solver to enforce Dirichlet and

Neumann boundary conditions [165, 166].

The interaction equations between the fluid and the immersed structure are given by

f(x, t) =

∫
F(r, t)δ(x−X(r, t))dr (3.74)
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U(X(r, t), t) =
∂X(r, t)

∂t
=

∫
u(x, t)δ(x−X(r, t))dx, (3.75)

where X(r, t) gives the Cartesian coordinates at time t of the material point labeled by Lagrangian

parameter r, F(r, t) is the force per unit area imposed onto the fluid by elastic deformations in

the immersed structure as a function of the Lagrangian position, r, and time, t. The force density,

F(r, t), is a functional of the current immersed boundary’s configuration. Moreover, we write the

force density as

F(r, t) = F(X(r, t), t), (3.76)

where F(X, t) is a combination of all the fiber components modeling the desired material properties

of the immersed structure. The fiber models implemented in IB2d are described in subsequent

sections.

Eq.(3.74) applies a force from the immersed boundary to the fluid through a delta-kernel integral

transformation. Eq.(3.75) sets the velocity of the boundary equal to the local fluid velocity, to satisfy

the no-slip condition.

Upon discretizing Eqs.(3.74) and (3.75), regularized delta functions, δh, are implemented,

δh(x) =
1

h2
φ
(x
h

)
φ
(y
h

)
, (3.77)

where h is the fluid grid width and

φ(r) =


1
4

(
1 + cos

(
πr
2

))
|r| ≤ 2

0 otherwise
, (3.78)

where r is the distance from the Lagrangian node. This regularized delta function has compact

support. Other compactly supported discrete delta functions may be easily incorporated into the

code as well. More details on regularized delta functions and their discretizations may be found in

[162, 167].

The coupled equations (3.72-3.75) are solved using the algorithm described in Peskin’s IB review

paper [162] with periodic boundary conditions imposed on both the fluid and immersed boundary.

Details on the discretization used in IB2d are found in A.1.

The standard numerical algorithm for immersed boundary [162], illustrated in Figure 3.8, is as
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(a) (b)

(c) (d)

Figure 3.8: A visual guide to the standard steps in Peskin’s immersed boundary method. (a) The
elastic deformation forces are computed from the current configuration of the immersed structure.
(b) Those deformation forces are spread to neighboring fluid grid points, via Eq.(3.74). (c) The
fluid velocity is updated everywhere in the domain using Eqs.(3.72) and (3.73). (d) The immersed
boundary is moved at the local fluid velocity by Eq.(3.75). Note that the deformation force vectors
in (b) and velocity vectors in (c) are not parallel, as the fluid already may have some underlying
non-zero velocity field, which gets perturbed due to the presence of the deformation forces.
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follows:

Step 1: Compute the force density Fn(r, t) on the immersed boundary from the current boundary

deformations, Xn, where n indicates the nth time-step.

Step 2: Use Eq.(3.74) to spread these deformation forces from the Lagrangian nodes to the fluid lattice

points nearby.

Step 3: Solve the Navier-Stokes equations, Eqs.(3.72) and (3.73), on the Eulerian domain. E.g., update

un+1 and pn+1 from un and fn. Note: since we are enforcing periodic boundary conditions on

the computational domain, the Fast Fourier Transform (FFT) [168, 169] is used to solve for

these updated quantities at an accelerated rate.

Step 4: Update the fiber model positions, Xn+1, using the local fluid velocities, Un+1, using un+1 and

Eq.(3.75). E.g., move the immersed structure at the local fluid velocities thereby enforcing no

slip boundary conditions.

Fiber Models Implemented in IB2d In this section, all current fiber models implemented in

IB2d are described. Various fiber models give the immersed boundary certain desirable material

properties relevant to many scientific applications. Currently the following types of fiber models are

available:

1. Springs (Hookean or Non-Hookean and/or Damped)

2. Torsional Springs

3. Non-invariant Beams

4. Target Points

5. Mass Points (with or without gravity)

6. Porosity

7. Muscle-Fluid-Structure Models

8. User-defined Force Model
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Once the deformation energy has been calculated in the algorithm, e.g., in Step 3,

E(X(r, t), t) =

M∑
k=0

Ek(Xk,1,Xk,2, . . .Xk,M ), (3.79)

the corresponding elastic forces can be computed via derivatives of the elastic energy, where the

elastic deformation force at point c of fiber model k is calculated as

Fk,c(X(r, t), t) = −∂E(X(r, t), t)

∂Xk,c
. (3.80)

Note that X contains the coordinates of all immersed boundary points, M is the number of fiber

structures in the system, M is the number of immersed boundary points in fiber structure, and the

negative sign is chosen to drive the system towards a minimal energy state. Furthermore we note

that (3.79) is a combination of the deformation energies from all respective fiber models, which are

described below.

Springs

Resistance to stretching between successive Lagrangian points can be achieved by modeling the

connections with Hookean (or Non-Hookean) springs of resting length RL and spring stiffness kS . If

the virtual spring displacement is below or beyond RL, the model will drive the system back towards

a lower energy state. The elastic potential energy for a Hookean spring is given by

Espring =
1

2
kS (||XSL −XM || −RL)2, (3.81)

where XM and XSL are master and slave node coordinates respectively. The corresponding defor-

mation forces is given by differentiation of the elastic energy as in Eq.(3.80)

Fspring = kS

(
1− RL
||XSL −XM ||

)
·

 xSL − xM

ySL − yM

 . (3.82)

This fiber model is illustrated in Figure 3.9a. Note that the above calculation computes the forces
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(a) (b)

(c)

(d)

Figure 3.9: Illustrating the key points of various fiber models implemented in IB2D. (a) Two nodes
connected by a virtual spring held at the resting-length of the spring (top) and a rendering of the
longitudinal forces induced when the spring is stretched (bottom). (b) A torsional spring connecting
three adjacent Lagrangian nodes at its equilibrium configuration, e.g. angle θ (left) and an illustration
of the force experienced by the middle node, XM , when the system is not at its lowest energy state
(right). (c) A massless and massive point, X and Y respectively, connected by a stiff virtual spring.
Incoming flow moves the massless point to a new position, which exerts a pulling-like effect on the
massive point. The massive point will move depending on a coupled constitutive equation. (d)
Incoming flow permeates a porous boundary. The amount of flow that moves through the body
depends on the permeability of the membrane; all flow through the boundary is normal to the body
itself.
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acting on the master node; a change in sign gives the forces acting onto the slave node. Two nodes

are connected by a virtual spring shown when the spring is at resting-length (top). A rendering of

the longitudinal forces induced when the spring is stretched is also depicted (bottom).

Furthermore, IB2d also implements nonlinear springs that assume the nonlinear extension of

Eq.(3.81), i.e.

Espring =
1

2
kS (||XSL −XM || −RL)β+1, (3.83)

where β ∈ Z+. The corresponding force onto the master node is then given by

Fspring =
β + 1

2
kS

(
1− RL
||XSL −XM ||

)β
·

 xSL − xM

ySL − yM

 . (3.84)

Moreover, one may also choose to use damped springs, which assumes a frictional damping force

that is proportional to the velocity of the oscillation. We note that these take a similar form to the

linear spring case, but with an additional term modeling the damping, i.e.,

Fd.spring = kS

(
1− RL
||XSL −XM ||

)
·

 xSL − xM

ySL − yM

+ bS
d

dt
||XSL −XM ||, (3.85)

where bS is the damping coefficient.

Torsional Springs

Resistance to bending between three successive Lagrangian points is modeled using a torsional

spring connecting the three nodes. The model assumes a desired angle θ, a prescribed ‘curvature’

between the three Lagrangian points, with corresponding bending stiffness kB. Hence the bending

energy is given as

Ebend =
1

2
kB (ẑ · (XR −XM )× (XM −XL)− C)2, (3.86)

where XR,XL, and XM are right, left, and master Lagrangian nodal coordinates, and C =

dLMdMR sin θ. Note that C is not the standard definition of curvature, but a curvature defined at

the desired angle θ and distances between links, dLM and dMR. This is only accurate for small
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changes in amplitude or radii and higher order accurate curvature models will be implemented in

future releases.

The penalty force is designed to drive any deviations in the angle between these links back

towards a lower energy state, i.e., θ. The corresponding bending force is given by

FbendL
= −kB

(
(xR − xM )(yM − yL)− (yR − yM )(xM − xL)− C

)
·


(yR − yM )

−(xR − xM )


(3.87)

FbendM
= kB

(
(xR − xM )(yM − yL)− (yR − yM )(xM − xL)−C

)
·


(yM − yL) + (yR − yM )

−(xR − xM )− (xM − xL)


(3.88)

FbendR
= kB

(
(xR − xM )(yM − yL)− (yR − yM )(xM − xL)− C

)
·


(yM − yL)

(xM − xL)


(3.89)

An illustration of 2D torsional springs is shown in Figure 3.9b, where a torsional spring connects

three adjacent Lagrangian nodes XL,XM , and XR at their equilibrium configuration with angle θ

(left). The force is experienced by the middle node, XM , when the system is not at its lowest energy

state (right), driving it back to its preferred configuration.

In this configuration, torsional deformation forces can only occur on immersed boundary points

on the interior or the fiber structure, not the endpoints.

Non-invariant Beams
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Another way to model the resistance bending between three successive Lagrangian points is

using a non-invariant beam connecting the three successive nodes. The model assumes a prescribed

‘curvature’ (in both x and y components) between the three Lagrangian points, with corresponding

bending stiffness kNIB. The corresponding bending deformation forces are modeled as

Fbeam = kNIB
∂4

∂s4
(X(s, t)−Xb(s)) , (3.90)

where X(s, t) is the current Lagrangian configuration at time t, e.g., the mapping of the Lagrangian

points s to the underlying Cartesian grid, and X(s) is the preferred configuration of the fiber model.

More details about this fiber model can be found in [162, 170, 171] and the discretization is discussed

in Appendix A.2. This model is denoted as non-invariant beams since these beams are non-invariant

under rotations.

Similarly to the torsional spring model, non-invariant beam deformation forces can only occur on

immersed boundary points on the interior or the fiber structure, not the endpoints.

Target Points

Target points can be used to prescribe a preferred position or motion of the Lagrangian points.

In this formulation, each Lagrangian point is associated with a virtual or target point. The boundary

point is connected to its virtual target point via a stiff spring, i.e., a spring with zero resting length.

Essentially the virtual point mandates where the target point should be. The deformation energy is

given similarly to Eq.(3.81),

ET (XM ) =
1

2
kT

∣∣∣∣∣∣XM −XT
M

∣∣∣∣∣∣2, (3.91)

where kT is the target point stiffness and XM and XT
M are the coordinates of the physical Lagrangian

point and virtual target point, respectively. Hence the corresponding deformation forces are given as

FT = − ∂ET
∂xM

= −kT

 xM − xTM

yM − yTM

 . (3.92)
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Note that in both cases, it is standard for kT to be very large in order to hold the Lagrangian

points nearly rigid or move them in a prescribed manner based on updating the positions of the

virtual nodes. Many scientists have used this formulation to prescribe motion in a variety of contexts

[143, 172].

Massive Points

Artificial mass can be modeled on the fiber structure using an approach that is similar to target

points. Y(r, t) gives the Cartesian coordinates of the massive points, with associated mass density

M(r). These points do not interact with the fluid directly and can be thought to be a virtual

point. X(r, t) give the Cartesian coordinates of the Lagrangian boundary points which are massless

and interact with the fluid. Recall that the boundary points also move at the local fluid velocity,

and exert elastic deformation forces to the local fluid grid. If the massive points deviate from the

Lagrangian boundary points, a restoring force will drive them back together.

The equations modeling this system are

FM = kM (Y(r, t)−X(r, t)) (3.93)

M(r)
∂2Y(r, t)

∂t2
= −FM −M(r)gê2, (3.94)

where kM is a stiffness coefficient with kM >> 1, and g is the acceleration due to gravity in direction

ê2.

Note that the coupling is very similar to the target point formulation with the distinct difference

that, rather than the movement of the massive points being prescribed, it is based on a constitutive

equation, Eq.(3.94). Furthermore, gravity does not have to be applied in Eq.(3.94); rather, the

system can be modeled by purely artificial mass alone without the influence of gravity.

A simple rendering of the massive point fiber model is depicted in Figure 3.9c. The Lagrangian

boundary point and massive point, with Cartesian coordinates X and Y, are shown respectively,

connected by a stiff virtual spring. Background fluid flow potential moves the massless point to a

new position which exerts a pulling-like effect on the massive point. The massive point will move

depending on the coupled constitutive equation given in Eq.(3.94).
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Porosity

An interpretation of Darcy’s Law is used to make the immersed structure permeable to fluid. In

other words, the porous structure allows fluid to flow through it. Darcy’s Law is a phenomenologically

derived constitutive equation, which states the velocity of the fluid flowing through a porous medium

is proportional to a pressure gradient of the two sides of the medium. This relation can be written as

Up = −κp[p]
µσ

, (3.95)

where Upn̂ is the porous slip velocity and κp is the membrane permeability, µ is the fluid’s dynamic

viscosity, σ is the structure’s thickness, [p] is the pressure gradient across the boundary, and n̂

is a unit vector normal to the structure. However, the pressure jump may be simplified by first

integrating across Eq.(3.72) to eliminate the singular forcing term and obtain jump conditions for

the normal and tangential fluid stresses across the boundary, which can be simplified to reduce the

pressure jump to

[p] =
F · n̂
||Xr||

, (3.96)

as in [173],[174]. Hence the porous slip velocity is found to be

Up = −αF · n̂
||Xr||

, (3.97)

where α =
κp
µa is the porous slip parameter and Xr is the position of the porous Lagrangian structure.

As stated in [173], since κp can be easily obtained from experiments, α can be easily found as well.

Once the Darcy porous slip velocity, e.g. Eq.(3.97), is found, Eq.(3.75) must be adjusted to

account for the porosity

U(X(r, t), t) = −Upn̂+

∫
u(x, t)δ(x−X(r, t))dx. (3.98)

This formulation was first described in [175] and the discretization used to find the normal vectors

in IB2d can be found in A.3. An illustration of porosity is shown in Figure 3.9d, where incoming
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fluid flow permeates a porous boundary. The amount of flow that moves through the body depends

on the permeability parameter, α, associated with the membrane. All flow through the boundary is

normal to the body itself.

Muscle-Fluid-Structure Models: FV-LT Model

The simple muscle model described in [146] has been incorporated into IB2d. This muscle model

attempts to model both a force-velocity (FV) and length-tension (LT) relationship in muscle without

coupling in the underlying cellular processes like calcium signaling, myosin cross-bridge attachment

and detachment, or filament compliance.

The force a muscle can generate depends on the speed of muscle contraction; e.g., the faster

a muscle shortens, the less force it generates. Traditionally a Hill model is used to describe this

relationship and takes the following form [176, 177],

VF =
b(Fmax − F )

F + a
, (3.99)

where VF is the muscle fiber’s shortening velocity, F is the force generated by the fiber, and Fmax is

the maximum load at zero contractile velocity. Parameters a and b can be determined experimentally

and are are related to the internal thermodynamics of the muscle. An example force-velocity curve

is shown in Figure 3.10a.

The force a muscle fiber can generate is also known to be a function of its length. Initially when

the thick filaments begin to bind to the thin filaments, the resulting force increases as the muscle

shortens. However, if the muscle is contracted too far, there are fewer myosin heads to attach to

the actin filaments, and the resulting force exerted is smaller. Hence the maximal muscle tension

is generated between the two extremes, i.e., when the myosin heads are within reach of the thin

filaments. An example length-tension curve is shown in Figure 3.10b where actin and myosin binding

is depicted at varying muscle lengths. A simple model of a length-tension relationship is described

in [178],

FI = FIO exp

[
−
(
Q− 1

SK

)2
]
, (3.100)
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(a) (b)

Figure 3.10: Example force-velocity and length-tension curves illustrating the respective relationships
that the FV -LT model is trying to capture.

where Q = LF
LFO

is the ratio of the length of the muscle fibers to their length when they generate

their maximum tension, FI is the maximum isometric tension at a given fiber length LF , FIO is the

maximum isometric force exerted at the optimum length of the muscle fibers, and SK is a parameter

specific for each muscle. Note that these parameters can be determined experimentally.

An easy way to combine Eqs.(3.99) and (3.100) is to take the product of their normalized versions,

as in [179, 146]. The resulting model is given by

Fmuscle(LF , VF ) = af F̃maxF1(LF )F2(VF ), (3.101)

where af is the activation strength of the muscle and F̃max is the normalized maximum isometric

force generated at the full activation of the muscle fibers at their optimum lengths, and F1(LF ) and

F2(VF ) are normalized versions of Eqs.(3.99) and (3.100), given by

F1(LF ) = exp

[
−
(
LF /LFO − 1

SK

)2
]
, (3.102)

F2(VF ) =
1

Fmax

[
bFmax − aVF

b+ VF

]
. (3.103)

Muscle-Fluid-Structure Models: 3-Element Hill Model
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Figure 3.11: Schematic diagram of the 3-Element Hill model of muscle contraction, containing a
contractile element, series element, and parallel element modeling actin and myosin cross-bridges,
tendons, and connective tissues, respectively.

The 3-Element Hill model of muscle activation describes sustained muscle contraction by modeling

the actin and myosin cross-bridges, muscle tendon, and connective tissues for a muscle. The model

has a contractile element which models the force generated by the actin and myosin cross-bridges at

the sarcomere level, and two non-linear spring elements, one in parallel and one in series with the

contractile element. The series element models the muscle tendon, i.e., the intrinsic elasticity of the

myofilaments, and has a soft tissue response and provides energy storing mechanism. The parallel

element takes care of the passive behavior when the muscle is stretched, representing connective

tissues with a soft tissue-like behavior. Furthermore, the contractile element is fully extensible when

inactive but capable of shortening when activated [176, 177]. The 3-elements are depicted in Figure

3.11.

The net force-length properties of a muscle are a result of both the active (contractile element and

series element) and passive (parallel element) components’ force-length characteristics. If FCE , FSE ,

and FPE represent the force produced by the contractile, series, and parallel elements respectively,

their relations satisfy

Ftot = FSE + FPE (3.104)

FCE = FSE , (3.105)
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where Ftot is the total force produced by muscle contraction. Furthermore the relations for muscle

shortening are

Ltot = LCE + LSE = LPE , (3.106)

where Ltot is the total length of the muscle. Since the overall muscle length is conserved, if the series

element is stretched, the contractile element must contract an equal amount.

As mentioned previously, to model the force produced from the series and parallel elements, we

use non-linear springs, e.g.,

FSE = kSE (L− LCE)n (3.107)

FPE = kPE (L− LPER)n , (3.108)

where kSE and kPE are the spring stiffnesses for the series and parallel elements respectively, and

LPER is the resting-length of parallel element’s non-linear spring. Note that the series element’s

spring has zero resting-length as it’s length depends solely on the length of the contractile element.

n is an integer assumed to be greater than or equal to 2. There are many ways to represent these

elements; these are only one possible choice.

The contractile element assumes the length-tension and force-velocity relationship of muscle. For

this reason, Eq.(3.101) is one possible choice for modeling its force generation, e.g.,

FCE = af F̃maxF1(LCE)F2(VCE), (3.109)

where LCE is the length of the muscle fibers and VCE is the contraction speed of the muscle fibers

being represented in the contractile element. Another possible choice is described in [147].

User-defined Force Model

IB2d also allows the option for the user to define their own force model. The user has control in

how they define their model as well as what Lagrangian points are involved, as many items are passed

into the model automatically, such as the current and previous position of the Lagrangian points,

current time, time-step, etc, and also includes the functionality for the user to read in appropriately
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chosen data for parameters, etc.

Incorporated Models In this section, we will describe inclusions within the current IB2d software

that are in addition to the fiber and material property models. Currently the following capabilities

have been added to the framework:

1. Tracer particles

2. Concentration gradients of a chemical (advection-diffusion)

3. Background flow profiles (artificial forcing)

4. Basic electrophysiology frameworks

5. Boussinesq Approximation

These models are incorporated either by additional forcing terms in Eq. (3.72) (background flow

profiles), a constitutive equation that depends on u(x, t) without affecting the fluid momentum itself

(tracers and concentration gradients), or by coupling into a specific fiber model (electrophysiology).

Tracers

Tracers are neutrally buoyant particles that move at the local fluid velocity. They have no impact

on the fluid motion themselves, but rather “go with the flow." If a tracer’s position is given by Xtr,

their equation of motion is solely given by

dXtr

dt
= utr(x, t), (3.110)

where utr(x, t) is the background fluid velocity interpolated to the tracer particle. Tracers are useful

to observe the fluid motion during a simulation. The tracers move in the simulation by harnessing

the discrete delta functions to interpolate the velocity of the exact position of the tracer.

Concentration Gradients
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Similar to tracers, concentration gradients can be used to observe the motion of the underlying

fluid; however, this model also incorporates diffusion. Rather than observing individual particles

advect and diffuse, a concentration gradient is given as a continuum, c, which then gets spread out

by an advection-diffusion constitutive equation,

∂c

∂t
+ u(x, t) · ∇c = D∆c, (3.111)

where D is the diffusivity coefficient. We note that D is a constant in this formulation, there are no

sources or sinks, and that u is, of course, assumed to be incompressible. The details of the numerical

solver are found in A.5.

We also include functionality for incorporating the Boussinesq approximation to couple the

advection-diffusion equation to forces [180, 181].

Background Flow Profiles (Artificial Forcing)

Although the computational domain is assumed to have periodic boundaries, one can induce a

desired background flow profile by artificially adding a force onto the fluid, realized as an additional

forcing term on Eq.(3.72).

Essentially, the additional force will be a penalty-type term, which exerts a force onto a desired

subset of the fluid grid, if the fluid velocity does not match the desired flow profile. Such a forcing

term can take the form

Farb = karb (u(x, t)− uflow(x, t)) , (3.112)

where karb is the penalty-strength coefficient, and uflow(x, t) is the desired background flow profile

as in [26, 172], where it was used to create parabolic inflow into a channel along the x-direction, i.e.,

uflow(x, t) =

 Umax

(
1−

(
0.5−x
d/2

)2
)

0

 . (3.113)

We note this idea has also been used when a preferred mode of active force is desired [182, 183, 184].

This idea is illustrated in Figure 3.12, where the fluid grid is given by a rectangular grid with
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Figure 3.12: A depiction of exerting an arbitrary force onto the background fluid grid to obtain the
desirable flow profile. The fluid grid is given by the rectangular grid with the selected grid points to
enforce the penalty-force highlighted and circled in green and orange. The penalty force is applied to
the fluid lattice points in green if the flow profiles do not match at those selected nodes. A cartoon
rendering of the resulting flow is illustrated as the blue arrows.

the selected grid points to enforce the penalty-force highlighted and circled in green and orange,

respectively. The penalty force is applied to those green fluid lattice points if the flow profiles do not

match at those selected nodes. A example rending of the resulting flow is illustrated as the blue

arrows, if the desired flow profile is parabolic. Note that this addition of momentum (energy) into

the system is not an issue, because of the assumed periodic boundary conditions.

Electrophysiology

A basic model of action potential propagation is incorporated using the FitzHugh-Nagumo

equations (FHN) to model the system. FHN is a reduced order model of the Hodgkin-Huxley

equations, which were the first equations to describe the propagation of an electrical signal along

excitable cells. FHN has been incorporated into fluid-structure interaction models before [22]. The

governing equations are given as

∂v

∂t
= D∇v + v(v − va)(v − 1)− w − I(t) (3.114)

∂w

∂t
= ε(v − γw), (3.115)

where v(x, t) is the membrane potential, w(x, t) is the blocking mechanism, D is the diffusion rate

of the membrane potential, va is the threshold potential, γ is the resetting rate, ε is the blocking

strength parameter, and I(t) is an applied current, e.g., an initial stimulus potentially from pacemaker

signal activation. Note that v is the action potential and that w can be thought to model a sodium
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blocking channel.

Once the membrane potential is found, it must be interpolated to the Lagrangian grid. Action

potential propagation can only then can be used activate pumping or initiate motion to which induces

deformations of the structure to model desired biological or physical phenomena. Coupling the action

potential to the generation of force can be done in many different ways for various applications, such

as for cardiac contraction [185, 22, 95] or locomotion [186, 187, 145].

Boussinesq Approximation

The Boussinesq approximation is incorporated into IB2d to model fluctuations in the dynamics

of both a concentration gradient (background field) and the momentum equation. The Boussinesq

approximation can be thought of as an approximation to a variable density field, where the essence

is that any differences in inertia are negligible, but gravity is strong enough to make the specific

weight appreciably different between two fluids.

In general the approximation ignores density differences, except where they are multipled by

a gravitational acceleration field, g. It assumes that density variables have no effect on the fluid

flow field, only that they give rise to bouyancy forces. By using the Boussinesq approximation,

one bypasses the issue of having to solve the fully compressible Navier-Stokes equations for certain

applications.

The extra forcing term on the incompressible Navier-Stokes equations (3.72)-(3.73) are of the

form

fBouss = αBρgC, (3.116)

where αB is the expansion coefficient, e.g., thermal expansion, etc., ρ is the density of the fluid,

g is the gravitational field, and C is the background concentration. When implementating the

Boussinesq approximation, the Navier-Stokes equations then take the form,

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∆u(x, t) + f(x, t) + αBρgC (3.117)
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∇ · u(x, t) = 0. (3.118)

We note that these models have been incorporating into immersed boundary frameworks before,

see [188, 138, 189].

3.3.3 IB2d Work Flow

We will now briefly describe the typical work flow for using the IB2d software. Both MATLAB

and Python have their own respective directories which in turn contain two folders: “Examples" and

“IBM_Blackbox". The Examples folder contains all currently implemented simulation examples

including the necessary input files to run each simulation, with each example organized in its own

folder. The IBM_Blackbox folder contains all methods for solving the fluid-structure interaction

problems. The software is set up such that the user will not have to change the underlying mechanics

of the immersed boundary method unless they wish to make additions to the algorithm, e.g.,

implementing more fiber models, etc.

Vectorized functions were used in solving the Navier-Stokes equations, i.e., updating the fluid

velocities, and throughout IB2d when appropriate. At this time IB2d uses only built-in MATLAB

functions for the MATLAB implementation and the Python 3 implementation uses the standard

python library, as well as, packages numpy, matplotlib, numba, and pandas in its implementation.

Inside an example sub-directory, there are multiple files. Two files that must be in every example

are input2d and main2d. input2d is the file where the user chooses all parameters required for a

simulation, i.e., the fluid parameters, temporal information, grid parameters, fiber model construction,

how to save the data, etc. main2d will read in this file and then read in the corresponding input

files associated with the choices selected in input2d. A graphical description of input2d is given in

Figure 3.13.

After setting desired parameters and selecting the necessary flags in input2d, assuming the user

has the appropriate associated input files corresponding to those selections the simulation is started

by calling the main2d script. This script reads in all the information from input2d and passes it to

the IBM_Driver script. Once the simulation finishes, a visualization folder, viz_IB2d, will have all

the Lagrangian structure and dynamical data from the simulation in .vtk format [190]. .vtk files can

be visualized using Paraview [191] or VisIt [192].

Each fiber model has an associated input file type, with the first line being the number of total
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Figure 3.13: Descriptions of selections in input2d. This file controls what inputs get passed to the
main IB driver method.
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fiber points associated with that type. If the immersed structure is called “struct", the possible file

types are as follows

• struct.vertex: A list of all the (X,Y ) initial coordinates of the Lagrangian points

Figure 3.14: Input format for the .vertex file

• struct.spring: A list of the master and slave nodes for each linear spring along with their

associated spring stiffness, resting-length, and degree of non-linearity. Note that if using only

Hookean springs, the degree of non-linearity can be omitted and IB2d will automatically

assume linear springs.

Figure 3.15: Input format for a .spring file

• struct.beam: A list of the left, middle, and right Lagrangian indices associated with each

torsional spring (beam) and their associated beam stiffness and curvature.

Figure 3.16: Input format for a .beam (torsional spring) file

• struct.target:A list of all target point indices with their associated target point stiffness.

Figure 3.17: Input format for a .target file

• struct.mass: A list of all Lagrangian mass point indices along with their associated mass-spring

stiffness and mass.
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Figure 3.18: Input format for a .mass file

• struct.porous: A list of all porous Lagrangian points, along with their associated porosity

coefficient, α, and their Stencil ID.

Figure 3.19: Input format for a .porous file

(a)

(b)

Figure 3.20: (a) Order of porous stencil IDs. (b) An example of how the stencil IDs are defined
using the porous structure from Figure 3.9d.

Note: the stencil ID is an integer between {−2,−1, 0, 1, 2}, which declares which points around

the node of interest will be used in the derivative calculations. For porosity, you need a

minimum of 4 nodes surrounding the porous node. This idea is illustrated in Figure 3.20,

which shows how a group of 5 porous stencil IDs would be labeled and an example of how they

would be labeled in practice for a toy example.

• struct.muscle: A list of all FV -LT muscle master and slave node Lagrangian indices, along

with their associated muscle length in which the fibers generate their maximum tension (LFO),

SK-parameter, thermodynamic parameters, a and b, respectively, and the muscle’s maximum

load at zero contractile velocity (Fmax).
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Figure 3.21: Input format for a .muscle (FV-LT muscle) file

• struct.tracer: A list of all tracer particles’ initial coordinates, (X,Y ).

Figure 3.22: Input format for a .tracer file

• struct.user_force: The user has the functionality to define this input file appropriately as

they desire. It is our hope that they would treat this like the previous fiber model input files.

These file formats are consistent with those necessary to run simulations in IBAMR, making

this software an appropriate learning and analysis tool before scaling up to larger and more highly

resolved simulations.

3.3.4 Selected IB2d Examples

In this section we will present some examples which show some of the software’s functionality.

The software currently contains over 50 examples built-in; we will choose some that highlight specific

features of the software.

• The Rubber-band

• The Flexible Beam

• The “Date"

• Falling Spheres under Gravity vs. Pulsatile Flow

• Idealized Swimmer

• HeartTube with Electrophysiology and Calcium Dynamics
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Figure 3.23: A comparison of a porous rubberband (left) and a non-porous rubberband (right) done
in a single simulation. The colormap is of the fluid pressure. It is clear that both rubberbands start
stretched from their equilibrium position, but end at a circle; however, the porous rubberband does
not conserve the same volume, as fluid flows through it as the simulation progresses.

The Rubber-band The rubber-band is one of the quintessential problems in FSI. The band is

composed of springs between adjacent nodes, all with a preferred resting length of zero and constant

spring stiffness. We will model two such rubber-bands with equivalently perturbed initial states, but

the rubber-band on the left will be porous at each Lagrangian node to show how fluctuations cause

it to lose volume over time. In summary, the fiber models used are:

• Linear Springs

• Porosity (non-traditional rubber-band)

The simulation starts with the rubber band stretched into an elliptical shape with a fixed volume

of fluid trapped within the elastic band. The resting lengths were chosen to be zero, as to drive the

rubber bands toward their lowest energy state, which minimizes length for a given internal area, i.e.,

a circle. As the band moves toward this equilibrium position, it will contract and expand periodically

across the semi-major and semi-minor directions of the axis. In the case of the porous rubber-band,

it will also shrink in size. Simulation images are shown in Figure 3.23.
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Figure 3.24: The flexible beam shown at various times during the simulation. The colormap is of
the magnitude of velocity and is depicted along with the background fluid velocity vectors.

The Flexible Beam The flexible beam is another standard problem in FSI. It includes a “beam"

composed of adjacent torsional springs between three successive nodes and tethered to two fixed

points at the ends of the beam, modeled using target points. The torsional springs all have a

preferred ‘curvature’ of zero, making any perturbation in the geometry move towards a straight line.

The fiber models implemented are:

• Torsional Springs

• Target Points (fixed)

The simulation starts with the beam having been perturbed from its equilibrium position by

an ellipsoidal arc. Since the preferred torsional spring ‘curvature’ is zero, the torsional springs will

move the system towards an equilibrium where they all line up. Since the ends of the beam are fixed

horizontally from each other, the lowest energy state of the system will be when the beam forms a

horizontal line between the two end points. Time-slices from the simulation are illustrated in Figure

3.24.
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Figure 3.25: “The Date" example shows target points moving around the computational domain by
interpolating positions between three states which spell out certain phrases. The background color
map is vorticity.

The “Date" The “Date" illustrates the software’s ability to update target point positions. Every

Lagrangian point in this simulation is modeled as a target point and is given a specific location. As

the simulation progresses, Lagrangian point positions are moved to new prescribed positions via an

interpolation function, implemented within update_target_point_positions. The fiber models used

are:

• Target Points (with dynamically updating positions)

The simulation starts in a configuration that spells out “Hi KC!!" enclosed within a square of

Lagrangian points with a few other lines of Lagrangian points in decor. As the simulation progresses,

those Lagrangian points are interpolated to their next prescribed configuration, spelling “Would

you like to. . . ". Finally, they move to their final configuration, spelling “. . . go on a date with me?"

Snapshots of the simulation are illustrated in Figure 3.25.

As stated before, the script update_target_point_positions was used to dynamically update the

position of the target points. Furthermore, within this script, one could also change any of the target

point parameters, i.e., target point tethering stiffnesses or position.

Similarly, other scripts can be used to dynamically update parameters of springs and/or torsional
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springs as a simulation progresses, e.g., ‘update_springs and ‘update_beams’. In the case of

springs, one can update the spring stiffnesses, resting-lengths, or even non-linearity properties

(see Example_HeartTube), and in the case of torsional springs one can update their torsional

spring stiffness or preferred ‘curvature’ (See Example_Jellyfish). The stiffnesses, resting-lengths,

curvatures, etc., can be spatially or time-dependent and appropriately set in the ‘update_springs or

‘update_beams’ scripts.

Figure 3.26: 3 spheres of different masses, with each sphere composed of uniform mass points, under
the influence of gravity with a pulsatile flow competing against gravity upwards. The sphere on the
left is the lightest and sphere on the right is the heaviest. In the left case, the pulsatile flow dominates,
while on the right gravity dominates, and in the middle, the pulsatile flow and gravitational forces
are approximately equivalent. The colormap depicts magnitude of velocity.

Falling Spheres under Gravity vs. Pulsatile Flow This example simulates a competition

between spheres falling under gravity and upward flow, which acts to help the spheres resist gravity.

There are three vertical channels composed of fixed target points. In each channel there is also a

sphere, composed of stiff springs and stiff torsional beams between each adjacent Lagrangian node.

Each point on the sphere has an associated mass with gravity pointed in the downward vertical

direction. There is also a net prescribed flow upwards, arising from an artificial force directly applied

onto the Eulerian (fluid) grid. The fiber models and functionality used are:
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• Linear Springs

• Torsional Springs

• Target Points (fixed)

• Massive Points

• Artificial Forcing on the Fluid Grid

The simulation begins with three spheres of different masses. Each sphere is itself composed of

individual uniform mass points; however, the individual mass points differ from sphere to sphere.

Gravity is acting on the masses to pull them downward while upward flow is providing a force in the

opposite direction. In one case, the flow dominates, in another gravity is balanced by the imposed

flow, and in the other case, gravity is dominant. This is illustrated in Figure 3.26.
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Figure 3.27: Simulation of the Rayleigh-Taylor Instability using the Boussinesq Approximation. A
heavier fluid (red) sits above a lighter fluid (blue). Note a more sophisticated advection-diffusion
solver will give rise to higher resolution of the instability fronts.

Rayleigh-Taylor Instability This example uses the Boussinesq Approximation to model the

Rayleigh-Taylor Instability. The instability manifests itself at the interface between two fluids of

different densities when the lighter fluid begins pushing the heavier fluid. The model itself only

uses target points to bounday the fluids in a rectangular domain, concentration gradients, and the

Boussinesq approximation frameworks. Hence the fiber models and functionality used are:

• Target Points (fixed)

• Background Concentration (advection-diffusion)
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• Boussinesq Approximation (with gravity flag)

The simulation begins when a heavier fluid (red) is placed over a lighter fluid (blue) with a

linear change in concentration at the interface. The lighter fluid begins pushing itself upwards

while the heavier fluid falls downward, resulting in the instability. The dynamics can be seen in

Figure 3.27. Note a more sophisticated advection-diffusion solver will give rise to higher resolution

of the instability fronts. Operator splitting methods [193] and flux limiters [194] are currently being

implemented.

Figure 3.28: Simulation of a falling sphere through a fluid with a background salinity stratification. A
spherical mass is released in the lighter salinity background (red) that sits above a heavier background
salinity (blue) and the mass falls due to gravity.

Falling Sphere with Boussinesq Approximation This example uses massive points to model

a sphere that is released in a lighter salinity background and then falls into the heavier salinity

portion. The sphere is composed of massive points along the boundary, springs connecting adjacent

Lagrangian points and the associated Lagrangian point across the sphere, and beams around adjacent

points on the sphere. The domain itself is composed of target points. Hence the fiber models and

functionality used are:

• Springs (linear)
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• Beams (torsional springs)

• Target Points (fixed)

• Massive Points (w/ gravity)

• Background Concentration (advection-diffusion)

• Boussinesq Approximation (with gravity flag)

When the sphere begins falling, it sphere entrains some of the lighter salinity concentration

around, carrying the lighter fluid downward. Two cases are compared corresponding to different

ambient fluid viscosities. The sphere in the less viscous fluid falls faster than the higher viscosity

case, and it also entrains more of the lighter salinity concentration.

Figure 3.29: A comparison of two idealized anguilliform swimmers moving forward due to continually
changes in the preferred curvature of the configuration. One has a stroke frequency of f = 0.25s−1

and the other, f = 0.5s−1. The colormap illustrates vorticity.
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Idealized Anguilliform Swimmer This example uses non-invariant beams and dynamically

updates the preferred beam curvature through the ‘update_nonInv_Beams ’ script to move forward.

The model also uses linear springs to connect successive Lagrangian points and all successive

Lagrangian points are connected by non-invariant beams. The following fiber models were used:

• Linear Springs

• Non-Invariant Beams

The motion is completely induced by changing the preferred curvature. Within the ‘update_nonInv_Beams ’,

the curvature is changed by interpolating through two different configurative phases of the swimmer,

more specifically their associated curvatures of each phase. The swimming motion is illustrating in

Figure 3.29. Those phases are shown below,

Figure 3.30: The two phases, in which, the preferred curvature was interpolated between to cause
forward swimming.

Using the Data Analysis package in IB2d, which is described in Section 3.3.5, a comparison of

distances swam by each swimmer as a function of the number of strokes is shown. The swimmer

with the slower stroke frequency performs better.
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Figure 3.31: A comparison of the distances swam by both swimmers as a function of the number of
strokes.

Figure 3.32: An idealized swimmer moving forward and turning due to the asynchronous muscle
activation. The colormap illustrates vorticity.
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Idealized Muscle Swimmer This example uses the 3-element Hill muscle model to cause an

idealized swimmer, shaped like a V , to move forward and turn. There are stiff linear springs and

stiff torsional springs connecting all adjacent Lagrangian points. Only 3 muscles connect one leg of

the V to the other, and are equally spaced at intervals 3L/10, 2L/5, and 9L/10 down the leg of the

swimmer, where L is the length of each leg. The fiber models used are:

• Linear and Non-Linear Springs

• Torsional Springs

• 3-Element Hill Model

The simulation begins with the swimmer in a V -shaped starting position at rest. Throughout

the simulation the muscles fire out of phase, causing the swimmer to move forward and turn. The

swimming behavior is shown in Figure 3.32.

Figure 3.33: A linear heart tube, which pumps when an action potential travels down the tube,
once enough free calcium binds to muscle filaments, to induce muscle contraction. The colormap
illustrates a background concentration gradient.
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HeartTube with Electrophysiology and Calcium Dynamics This example models a linear

heart tube, in which pumps via a traveling action potential that induces muscle contraction to occlude

the flexible tube. The propagation of the action potential is governed by the FitzHugh-Nagumo

equations, as in Eqs.(3.114) and (3.114). This model also accounts for free calcium ions binding and

release to induce the action potential signal.

The rate of calcium binding to, and release from, the actin filaments and the sarcoplasmic

reticulum is modeled using the law of mass action, such as in [186, 187],

dCa

dt
=

{
(k4Caf − k3Ca)(1− Caf ) + k1(C − Ca− Caf ) STIMULUS ON

(k4Caf − k3Ca)(1− Caf ) + k2Ca(C − S − Ca− Caf ) STIMULUS OFF

(3.119)

dCaf
dt

= −(k4Caf − k3Ca)(1− Caf ), (3.120)

where Caf is a the ratio of calcium-bound filament sites to total number of filament sites, Ca is the

ratio of free calcium ions to total number of filament sites, C is the ratio of total number of calcium

ions to total number of filament sites, S is the ratio of total number of sarcoplasmic reticulum

binding sites to total number of filament sites, and {k1, k2, k3, k4} are rate constants for binding and

release of Ca2+.

Force generation is modeled using the following non-linear spring-like formulation,

Fgen = kHT [v(x, t)]4 , (3.121)

where kHT is a stiffness parameter and v(x, t) is the magnitude of the action potential.

The heart tube itself is composed of linear springs and torsional springs between adjacent

Lagrangian points along the top and the bottom of the tube and the ends of the tube are held nearly

fixed using target points.

The fiber models and functionality used are:

• Linear Springs

• Torsional Springs
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• Target Points (fixed)

• Background Concentration (advection-diffusion)

• Electrophysiology (via FitzHugh-Nagumo)

Movement in the simulation begins when the threshold of free Ca2+ ions have binded to the

actin filaments has been exceeding, giving rise to an activation signal that propagates an action

potential down the hearttube. As the action potential propagates, it induces muscle contraction to

contract the flexible tube. The tube then relaxes as the action potential passes. Snapshots of the

simulation are shown in Figure 3.33. Note that this example was modeled after the computational

model in [22], with the addition of the calcium dynamics.

3.3.5 IB2d Data Analysis Package

IB2d also includes a data analysis package, which converts the data (.vtk) files back into

useful data structures in MATLAB or Python. Once imported, the data can then be manipulated

appropriately.

The data is imported using three different functions:

1. give_Lag_Positions(): gives all the Lagrangian positions at a specific time-step

2. import_Eulerian_Data(): gives all the Eulerian grid data at a specific time-step

3. import_Lagrangian_Force_Data(): gives the force data on the Lagrangian structure at a

specific time-step

Descriptions of all the data imported can be see in Figure 3.34.
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Figure 3.34: All the data (Lagrangian positions, Eulerian data, and Lagrangian force data) imported
in the data analysis software.

An example is contained within the code that analyzes data from a parabolic channel flow

example that computes the magnitude of the velocity across multiple cross-sections of the channel.

This simulation uses the following fiber model and functionality:

• Target Points (fixed)

• Artificial Forcing on Fluid Grid

Simulation images are shown in Figure 3.35, which illustrate the magnitude of velocity in the

channel, and data from the simulation is given in Figure 3.36.
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Figure 3.35: Simulation images taken from a channel with a parabolic flow condition at varying
times. The parabolic flow is enforced by an external forcing condition on the Eulerian grid in the
section outline in purple and shaded in red, while the vertical lines correspond to the cross-sections
of the tube where the velocity data will be analyzed.

It is clear from Figure 3.36 that as the simulation progresses the velocity profile within a cross-

section of the tube fully develops. The data plotted was taken along the dashed-vertical lines from

Figure 3.35.
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Figure 3.36: Data shown from three different time points during the simulation for velocities across
four different cross-sections of the tube. As time increases, the velocity profile becomes more fully
developed.

3.3.6 IB2d Code Validation

In this section we present a validation of the code, both in the form of a convergence study for a

particular example, as well as in the form of a comparison to experimental data.

Consider the example of a cross-sectional piece of an insect wing moving laterally across the

domain at a 45 degree angle of attack at Re = 128. The insect wing’s motion is governed by updating
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the target point positions, as in the example in Section 3.3.4. Snapshots from the simulation are

shown in Figure 3.37.

Figure 3.37: A cross-section of an insect wing moving laterally from left to right in a prescribed
manner for Re = 128.The background colormap depicts vorticity and the vector field is the fluid
velocity.

Convergence Study In this section, we perform a convergence study focusing on the forces

in the x- and y-directions, respectively referred to as drag and lift, which act on the immersed

structure (wing). We ran the simulations for different grid resolutions of the fluid domain (and

complementary Lagrangian spacing in the immersed structure) with Re = 128 at equivalent time-

step, dt, and uniform material properties of the wing. The fluid grid resolutions studied were

{32x32, 64x64, 96x96, 128x128, 256x256, 512x512, 768x768, 1024x1024}. The forces over time are

plotted below in Figure 3.38.
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(a) (b)

Figure 3.38: Non-dimensional lift (3.38a) and drag (3.38b) forces vs non-dimensional time for a
cross-section of an insect wing moving laterally at Re = 128.

The mean lift and drag forces were calculated over the wing at t = 0.025s for each simulation,

and then the relative error was computed between each simulation and a highly resolved case using

IBAMR with 1024x1024 fluid grid resolution.

Figure 3.39: A convergence study of the relative error of the lift and drag force, between each
simulation and the highly resolved simulation using IBAMR with 1024x1024 resolution on the
fluid grid. We note that the horizontal axis is the spatial step size, dx, where dx = 1/N , and
N = {32, 64, 96, 128, 256, 512, 768, 1024}.
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Applying a best fit line to the data produces the relative error convergence rates

Relative Error Drag ∼ 281838.29 (dx)2.16 (3.122)

Relative Error Lift ∼ 67920.36 (dx)1.83. (3.123)

For Re << 1 or Re >> 1, e.g., Re . 0.01 or Re & 1000, we expect less accuracy from our

software in its current implementation. More sophisticated fluid solvers could be implemented to

help remedy this issues in these fluid regimes. Moreover, enforcing no-slip boundary conditions

on the Lagrangian structure to higher-order, i.e., 2nd order or higher, as in [127, 128], will further

increase the accuracy. Currently, IB2d only enforces the no-slip condition to 1st order.

Experimental Validation In this section we compare simulation results from IB2d to experi-

mental data for a cross-section of an insect wing moving laterally across the domain for three orders

of magnitude of Re. The experimental data was obtained using particle image velocimetry (PIV)

[195], using a dynamically-scaled flapping robot, e.g., Robofly. [196, 197]. The simulations were run

on a 1024x1024 grid.
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Figure 3.40: Comparison of IB2d simulation snapshots and PIV experimental data for a wing
moving laterally across the domain for Re = {1, 10, 100}. The figures show the magnitude of velocity,
background velocity field, and streamlines.

Figure 3.40 shows a comparison of snapshots taken from IB2d and the PIV physical model over

a range of Re. The basic flow structures are reproduced in all cases.

3.3.7 Discussion and Conclusion Regarding IB2d

IB2d is immersed boundary software with full implementations in both MATLAB and Python

3.5. It offers a vast array of fiber model options for constructing the immersed structure and has

functionality for advection-diffusion, artificial forcing, muscle mechanics, and electrophysiology.

Furthermore, having been written in high-level programming languages, it allows one to implement

new fiber models and functionality easily and at an accelerated rate.

High-level programming languages also come with a few drawbacks. Grid sizes should not be

implemented beyond a 512 × 512 resolution due to computational costs. If higher resolution is
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required, we suggest moving to IBAMR. Additionally unlike IBAMR, IB2d was strictly designed for

2D applications. While full 3D simulations are often desired, some applications may only require

fluids with two-dimensions [145, 198, 199, 200, 95]. IB2d was written in 2D to make it more readable

and to lend itself for easier modification, particularly as a first step in trying to implement a new

model.

The format of IB2d was designed to mirror the input file formats used in IBAMR, and as such

can used as a stepping stone to using IBAMR. Neither IB2d nor IBAMR include functionality for

compressible fluids, non-Newtonian fluids, or variable density fluid applications at this time, but

there are plans to incorporate them in the future.

At this time IB2d does not include a turbulence model for large Re simulations. IBAMR is

capable of direct numerical simulations as it supports implicit large eddy simulation (LES) turbulence

modeling. For other kinds of turbulence models, one is directed to use other software packages

such as OpenFOAM by OpenCFD LTD [201], which is capable of FSI applications and is open

source. Commercial software, such as COMSOL [134] and ANSYS Fluent [202] can model FSI as

well. OpenFOAM, COMSOL, and Fluent allow easier entry into FSI through well developed GUIs

and manuals. However, licenses for COMSOL and Fluent are both expensive when not being used

for academic teaching purposes. It is also difficult to implement or modify numerical approaches in

COMSOL or Fluent, and there would be a steep learning curve for OpenFOAM.

Note that there are other methods for simulating fluid-structure interactions in addition to

Peskin’s immersed boundary method. Some examples include immersed interface methods [203, 204],

sharp interface methods [205, 206], the blob projection method [207], and level set methods [208, 209].

These methods have the benefit that they can capture high resolution of flow near interface when

desired. For further information and broader perspective on immersed boundary methods see [210].

However, the authors are not aware of any open source implementations at this time, and thus they

require a large entry time for research and development - especially in the case for 3D, adaptive, or

parallelized applications. The mathematical work for compressible, non-Newtonian, and variable

density fluids applications may be limited at this time as well. Furthermore, most sharp interface

approaches have been limited to thin structures (e.g., elastic membranes) or rigid bodies.

For teaching FSI applications, or fast implementations of new fiber models, numerical models

and approaches, or varying fluid solvers, IB2d is an ideal environment.
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3.3.8 Boyce Griffith’s IBAMR

For many of the models presented in this dissertation, they were studied using the IBAMR

framework, that is, the immersed boundary method with adaptive mesh refinement [127, 32]. It was

developed by Boyce Griffith and is available as open source software [211]. Before the release of

IBAMR, other authors had explored the immersed boundary method with adapative mesh refinement

[212, 213]; however, IBAMR was based off of a formally second-order accurate implementation of IB,

and is itself formally second-order accurate [32].

As opposed to IB2d, IBAMR is capable of both 2D and 3D applications; however, it currently

does not offer as many options for fiber models as IB2d, such as porosity or muscle models. It does,

however, offer a highly efficient way to solve Eqs. (3.72-3.75) and allow for highly resolved solutions

via adaptive mesh refinement. The AMR is used in regions to resolve the Eulerian fluid grid near the

immersed boundary as well as near regions of vorticity, that are higher than a user desired threshold.

Furthermore it is a parallelized implementation of IB. AMR and Parallelization made it an optimal

IB code, especially for 3D.

Adaptive Mesh Refinement (AMR) The basic idea of AMR is to boost the solving speed of

your numerical method by only highly resolving regions of the domain that require higher resolution.

That is, in regions away from the immersed structure or where not a lot of dynamics, the domain

will stay less resolved. The grid resolution is updated every specified number of time-steps, as not to

bog down the computational efficiency by continually changing the grid. IBAMR uses SAMRAI for

AMR [156]. An illustration of AMR meshes are found in Figure 3.41.
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(a) (b)

Figure 3.41: Illustrations of AMR Meshing. Note that Figure 3.41a illustrates an improperly nested
hierarchical structure, since the lower resolved Level 0 cells are directly adjacent to the higher
resolved Level 2 cells. Figure 3.41b shows a properly nested hierarchical structure. Images adapted
from [32].

Figure 3.41 illustrates the difference properly and improperly nested hierarchical patch levels.

Figure 3.41a illustrates an improperly nested hierarchical structure, since the lower resolved Level 0

cells are directly adjacent to the higher resolved Level 2 cells. Figure 3.41b shows a properly nested

hierarchical structure.

The coarse and locally refined grid data are interpolated between grids. Multiple levels of

refinement (> 2) are possible, making the composite interpolation between all the grid levels non-

trivial. Ghost cells are used to improve the accuracy and ease of the interpolation, as seen in Figure

3.42, adapted from [32]. The composite grid interpolation (averaging) operator, discrete divergence

operator, and discrete gradient operators all make use ghost cells as to be able to compute such

operators using standard uniform grid implementations [32].

Such interpolation schemes at the coarse-fine interface are not truly second-order accurate;

however, away from the interfaces solutions still maintain that level of accuracy. It is well known

that reducing the order of accuracy on lower dimensional interfaces within the computational domain

does not alter the global accuracy of the the solution and IBAMR has seen second-order convergence

rates for sufficiently smooth problems [32, 127].

138



Figure 3.42: An interface between a coarse grid and localled refined grid. Ghost cells are located at
the coarse-fine interface in this two-dimensional locally refined grid. Ghost cells are indicated in
gray and valid cells are indicated in black. Figure adapted from [32].

An example of an AMR mesh from a simulation from Section 5.3 is shown in Figure 3.43.

Figure 3.43: An example of AMR from a simulation with a two chambered heart containing a
trabeculated ventricle. It is clear that near the immersed structure there is the highest level of
refinement.

The only difference in the main algorithm of IB is that every specified number of steps, the

Eulerian grid may get regridded depending on the movement of the immersed boundary, or vorticity

values. The skeleton of the algorithm is listed below.
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Step 1: Find the force density, Fn on the immersed boundary, from the current boundary configuration,

Xn.

Step 2: Use Eq.(3.74) to spread this boundary force from the curvilinear mesh to nearby fluid lattice

points.

Step 3: Solve the Navier-Stokes equations, Eqs.(3.72) and (3.73), on the Eulerian domain. In doing

so, we are updating un+1 and pn+1 from un and fn. Note: because of the periodic boundary

conditions on our computational domain, we can easily use the Fast Fourier Transform (FFT)

[168, 169], to solve for these updates at an accelerated rate.

Step 4: 4a. Update the material positions, Xn+1, using the local fluid velocities, Un+1, using un+1

and Eq.(3.75).

4b. Refine Eulerian grid in areas of the domain that contain an immersed structure or where

the vorticity exceeds a predetermined threshold, if on a selected time-step for AMR.
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CHAPTER 4

Flow Through Heart Tubes

Many common household items mimic

the properties of human body parts.

Like cantaloupe melons, pudding.

-Professor Bunsen Jude (Bones)

Various kinds of hearts are found throughout the animal kingdom [214, 215, 216]. As previously

discuessed in Chapter 2, linear heart tubes are the first stage of vertebrate heart development.

However, many other organisms, e.g., invertebrates, also have valveless, tubular hearts [217]. We

begin our discussion of heart tubes looking at the evolution of hearts in the animal kingdom.

Figure 4.1 shows the evolution of hearts from tunicates to humans. Tunicates have an open

circulatory system from infancy through adulthood, in which blood is pushed through out the

organism by a valvless-tubular heart [214, 36]. Next on the evolutionary chain is the amphioxus.

The amphioxus heart is a rostrocaudally extended tube from its infancy through adulthood [218].

Similar to the tunicate heart, an amphioxus heart consists only of a monolayer of myocardial cells.

Furthermore its heart has no chambers, valves, endocardium, epicardium, or other differentiated

features of vertebrate hearts. Still, the amphioxus is regarded as the closest living invertebrate

relative to vertebrates [219]. The amphioxus appears fish-like.

Furthermore, Figure 4.1 illustrates the bifurcation to multi-chambered hearts in a vertebrate -

the lamprey. Lampreys are jawless fishes that are a very ancient lineage of vertebrates [220]. The

lamprey is considered to have four heart chambers, which are the sinus venosus, atrium, ventricle,

and conus arteriosus [221]. This is similar as to the zebrafish heart, which contains four chambers

- the sinus venosus, atrium, ventricle, and bulbus arteriosus. Lamprey hearts also are valvular

pumping systems, containing valve leaflets between chambers [222]. An evolutionary depiction of
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Figure 4.1: Figure adapted from Grosskurth et al. [33] illustrating the evolution of hearts from the
valveless heart tubes in the open circulatory systems of tunicates to the adult multi-chambered-
valvular of vertebrates.
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Figure 4.2: Figure illustrating the phylogenetic relationship and general heart structure of the
Chordate subphyla.Cephalochordates, like amphioxus, have a series of four peristaltic vessels that
serve as a pump, while tunicates have a single-chamber pump, which is composed of a single layer
of myocardium (red) surrounded by stiff pericardial layer (pink). The earliest vertebrates, e.g.,
lampreys, have at least a two-chambered myocardium composed of a layer of cardiac myocardial
cells (red), an endocardial cellular layer (yellow), valves that separate distinct chambers, and a
surrounding pericardium (pink).Figure adapted from [34].

heart morphology is illustrated in Figure 4.2, which was adapted from [34].

However, as discussed, the vertebrate embryonic heart is a valveless tube, similar to those in

various invertebrates, such as urochordates and cephalochordates [223, 224], making invertebrates

like sea squirts a possible model for heart development [225]. Historically, the pumping mechanism

in these hearts has been described as peristalsis [223, 15]. More recently, dynamic suction pumping

(DSP) has been proposed as a novel cardiac pumping mechanism for the vertebrate embryonic

heart by Kenner et. al. in 2000 [226], and was later declared the main pumping mechanism in

vertebrate embryonic hearts by Fourhar et. al. in 2004 [65]. Debate over which is the actual pumping

mechanism of the embryonic heart continues today, with the possibility that the mechanism may

vary between species or may be some hybrid of both mechanisms [23, 227].

The Liebau pump, a dynamic suction pump, was first described in 1954 [228], and was studied

as a novel way to pump water. It has not been until the past 20 years that scientists started

looking at the pump as a valveless pumping mechanism in many biological systems and biomedical

applications, including microelectromechanical systems (MEMs) and micro-fluidic devices. Direct

applications of such pumps include tissue engineering, implantable micro electrodes, and drug delivery
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Figure 4.3: Schematic diagram illustrating dynamic suction pumping [15]. (A) The flexible tube is
at rest. (B) Active contraction of the tube in a non-central location along the tube. (C) Contraction
induces an elastic passive bidirectional wave to propagate along the tube. (D) Wave reflects off rigid
portion of the tube on side nearest to contraction point. (E) The reflected wave travels down the
tube. (F) The waves reflect off the rigid section at the far side of the tube. Notice the the reflected
wave amplitude is smaller than the reflected wave off the other end.

[133, 229, 230, 228].

With extensive industrial applications, dynamic suction pumping has proven to be a suitable

means of transport for fluids and other materials in a valveless system, for scales of Wo > 1 [20].

DSP can be most simply described by an isolated region of actuation, located asymmetrically along

a flexible tube with stiffer ends. Flexibility of the tube is required to allow passive elastic traveling

waves, which augment bulk transport throughout the system. The rigid ends of the tube cause the

elastic waves to reflect and continue to propagate in the opposite direction, which when coupled with

an asymmetric actuation point, can promote unidirectional flow. DSP is illustrated in Figure 4.3.

Due to a coupling between the system’s geometry, material properties of the tube wall, and

pumping mechanics, there is a complex, nonlinear relationship between volumetric flow rate and

pumping frequency [20, 231, 17]. Analytic models of DSP have been developed to address this

relationship [232, 233, 234, 235, 231, 236]. Most models use simplifications such as the inviscid

assumption, long wave approximation, small contraction amplitude, one-dimensional flow. Further-

more, no analytical model has described flow reversals, which can occur with changes in the pumping

frequency. Relaxing many of these assumptions, physical experiments have been performed to better

understand DSP [17, 18, 231, 228], as well as in silico investigations [237, 238, 16, 20, 21]. Most of

these experimental and computational studies focus on the ‘high’ Wo regime (Wo >> 1), besides

studies by Baird et al. [20, 21].
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Although the size of the blood cells during the tubular heart stage is on the same order of

magnitude as the tube itself, previous work with numerical, analytical, and physical have not

considered their presence. Given their size (d ≈ 4 µm) and volume fraction (hematocrit) that ranges

from 0-40%, it is likely that the blood cells are having some effect on the flow. When the first

coordinated myocardial contractions begin to drive blood flow, the embryonic blood lacks blood cells.

However, as the heart tube stage progresses, the hematocrit (the volume fraction of blood cells)

becomes present, as seen in Figure 4.4, and increases linearly during development [239]. Hematocrit

may play a role in the distribution of forces along the endothelial lining that contribute to the

shaping and growth of the heart.

Figure 4.4: The embryonic heart tube of a Zebrafish 30 hpf courtesy of [35]. Spherical blood cells
are seen within the tubular heart. The heart tube is roughly 5 blood cells thick in diameter.

In this chapter we will investigate three phenomena pertaining to valveless, tubular hearts.

First we explore differences in bulk transport of mock blood cells when comparing dynamic suction

pumping to peristalsis. Next we explore a more biologically inspired pumping mechanism coupling

the electrophysiology to the initiation and contractile properties of the pumping behavior itself. Last,

we explore resonance properties of dynamic suction pumping.

4.0.1 Goals of heart tube with blood cells model

We seek to explore the performance DSP and peristalsis when blood cells are added to the flow.

In particular, a central goal is to quantify the relationship between the magnitude of flow and the

hematocrit in tubular hearts over a range of Womersley Numbers, Wo. While the vertebrate tubular

heart is on the order of tens of microns (Wo < 1) [20], the tubular hearts of many invertebrates

span from the tens to hundreds of microns (Wo < 1), e.g., sea squirts, to salps hearts on the order

of millimeters (Wo > 1) [223]. These ranges of Wo naturally lend themselves to numerical study
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via the immersed boundary method. The particular geometry for the computational models will be

based upon experimental data from zebrafish, Danio rerio, embryonic tubular hearts. This data was

also presented in [240].

4.0.2 Goals of the electro-mechanical model

Upon exploring the electro-mechanical model, we have coupled the propagation of action potentials

to muscle contraction and hence the overall pumping behavior. Upon comparison to the previous

model, the electro-mechanical model does not have any presribed motion, but rather the dynamics

are coupled to the electrophysiology model and model of muscle force generation. We focus on

perturbing a diffusive parameter in the electrophysiology model, e.g., the FitzHugh-Nagumo equations,

to investigate the bifurcation in action potential propagation. This bifurcation is able to capture a

variety of pumping regimes, e.g., both dynamic suction pumping and peristalsis.

4.0.3 Goals of the resonant pumping model

To further explore the properties of dynamic suction pumping, we investigate the resonant

properties of elastic tubes influence bulk flow properties in dynamic suction pumping. Upon doing

so, we also study how the addition of mass to the boundary, e.g., increasing boundary inertia, affects

the pumping wave-forms and bulk flow rates. We also explore these effects when the elastic tube is

over-, under-, and critically-damped.

4.1 Heart Tube Blood Cells

In this section we compare the performance of DSP to peristalsis when blood cells are added to

the flow. Our central focus is to quantify the relationship between the magnitude of the bulk fluid

transport and the hematocrit in tubular hearts over a wide range of Womersley Numbers, Wo. While

the vertebrate tubular heart is on the order of tens of microns (Wo < 1) [20], the tubular hearts of

many invertebrates span from the tens to hundreds of microns (Wo < 1), e.g., sea squirts, to salps

hearts on the order of millimeters (Wo > 1) [223]. These ranges of Wo naturally lend themselves

to numerical study via the immersed boundary method. We will also study this phenemena for

non-biologically relevant Wo, (2 ≤ Wo ≤ 30) The particular geometric and physical parameter

values for the computational models will be based upon experimental data from zebrafish, Danio

rerio, embryonic tubular hearts.
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Parameter Value
d 1

R1 = ro 3.75
R2 = ri 2.75

L 7.5
LA 0.9375
LS 0.75
rC 0.1

Table 4.1: Geometric parameters used in the numerical experiments. d is the diameter of the tube,
R1 and ro give the outer radius (or distance from the centerline) of the tube, R2 and ri give the inner
radius (or distance from the centerline) for the tube, L is the length of the flexible section for DSP
and contracticle wave section for peristalsis, LA is the length of straight tube before the actuation
section for DSP, LS is the size of the actuation section for DSP, and rC is the radii of a blood cell.

4.1.1 Model Geometry

We numerically model a 2D closed racetrack where the walls of the tube are modeled as 1D

fibers. The closed tube is composed of two straight portions, of equal length, connected by two

half circles, of equal inner and equal outer radii. The tube, or racetrack, has uniform diameter

throughout. The geometry of the racetrack is given in Figure 4.5.

This study goes beyond previous work [20, 21, 238] through the addition of deformable blood

cells, composed of springs connecting adjacent and opposite side Lagrangian nodes. The blood cells

are modeled circular, in agreement with in vivo imaging illustrating their spherical geometry in

embryonic blood [35], rather than biconcave [241].

All of the mock blood cells in our simulations have the same radii. The diameter of the blood

cells was set to d/5 [63]. The flexible cells were modeled via attaching springs between adjacent

Lagrangian points for each cell, i.e. beams and target points are not used. The geometry of the

heart tube with mock blood cells is illustrated in Figure 4.5a with all parameter values listed in

Table4.1. It is important to note that everywhere within our rectangular domain, the fluid has

constant density ρ and viscosity µ, even within our elastic structures.

DSP Model In the DSP model, the straight portion on the bottom of the racetrack geometry is

flexible, e.g., is composed of beams and springs and is not tethered to target points. All other sides

of the tube are held nearly rigid in a fixed position using target points, as well as springs and beams.

There are also springs attached over a finite actuation region from the inner to outer boundary in
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(a)

(b)

Figure 4.5: (a) illustrates the racetrack geometry, which is held rigid except for the bottom of the
tube which is flexible. It also includes flexible blood cells, here illustrating the initial position for a
volume fraction of 15%. (b) depicts the geometrical features of the racetrack.

148



the bottom elastic section of the tube. These springs are used to actuate the tube, modeling DSP.

We model the action of “muscles" with linear springs, whose resting lengths change in time. These

springs are attached between the inner and outer Lagrangian boundaries of the heart-tube.

Resistance to stretching is included in the tethered portion of the tube and in the sections with

preferred motion to reduce high frequency oscillations in the boundary. Small bending resistance is

added to the simulations to 1) better approximate heart tubes that have some resistance to bending,

2) reduce high frequency oscillations in the tethered portion of the tube, 3) smooth the transition

from the flexible portion of the tube to the tethered portion, e.g. smooth the connection points, and

4) eliminate any kinks in the elastic section of the tube.

Rather than attaching these muscles between all points within this region, we choose a region

that is 10% of the length of the flat portion, LS = L/10, which is also translated a distance of

LA = L/8 along the tube from the beginning of the flat portion from the left. This model was

selected since traditional DSP only assumes an off-center region of active contraction. The resting

lengths of these springs were changed according to

RL(s, t) = d
(

1− 8.5

10

∣∣∣ sin(2.3πt)
∣∣∣) (4.1)

Peristalsis Model A prescribed motion of the actuation region along the bottom straight portion

of the tube is used to drive peristalsis. To permit volume conservation in the closed racetrack, the

top straight section of the racetrack is modeled using springs and beams and is allowed to expand.

The reasons for using both springs and beams, which allow for stretching and bending respectively,

here are the same as in the dynamic suction pumping model.

The rest of the racetrack geometry composed of target points is held nearly rigid, similarly to

Section 4.1.1. There are also springs connecting the outer and inner layer of the top of the tube

for additional support. The peristaltic wave of contraction is prescribed by interpolating between

multiple positions as described below.

Phase 1 is defined by the position of the relaxed, straight tube. Phase 2 is defined as a fully

pinched tube at the initial position of contraction. Phase 3 is defined as a full pinched tube at the end

of the peristaltic wave. The initial contraction (pinching) of the tube was prescribed by interpolating

between Phase 1 and Phase 2. Similarly, the contractile release was performed by interpolating back

149



Figure 4.6: Interpolation phases for the traveling contraction wave along the bottom portion of the
racetrack geometry. From Phase 1 (straight red tube) to Phase 2, the tube gets pinched on the left
side. From Phase 2 to Phase 3, the occlusive pinch travels down the tube at speed c. From Phase 3,
the pinch is released and goes back to the straight tube (in red).

Parameter Time
T 0.435
T1 0.025× T
T2 0.95× T
T3 0.025× T

Table 4.2: Table of temporal parameters for the prescribed peristaltic wave. T is the non-dimensional
period. T1 and T3 gives the non-dimensional period for the initial pinching and release of the tube.
T3 gives the non-dimensional translation time of the peristaltic wave.

between Phase 3 and Phase 1. This is illustrated in Figure 4.6. The traveling wave of contraction

was performed by translating the pinch along the length of the contractile section of the tube.

The motion motion of the actual immersed boundary is driven by changing the position of the

target points, which are tethered to each immersed boundary point along the racetrack. The times

of each phase (contraction, translation, and relaxation) are seen in Table 4.2, where T is the period

of one complete peristaltic wave. The following function was used to induce the traveling peristaltic

wave between Phases 2 and 3,

Xtarget =

 ±Ã(x− xL(t))2(xR(t)− x)2 exp− (x−xC(t))2

(0.5w)2
−Ro/i, x ∈ [xL(t), xR(t)]

0 elsewhere
, (4.2)
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and

xL(t) = xiL + c(t− T1),

xC(t) = xiC + c(t− T1),

xR(t) = xiR + c(t− T1),

c = −
2xiC
T2

,

Ã = 850.0,

where xiL, x
i
C , and x

i
R are the left-most, center, and right-most points associated with the first pinch.

These points are illustrated in Figure 4.6. The parameters c and Ã are the wave speed and amplitude,

respectively. ±Ã and Ro/i correspond to the bottom and the top wall of the tube, respectively.

Determining Biologically Relevant Parameter Values To determine the lower range of Wo

within the heart tube, we take characteristic values for zebrafish embryonic hearts between 26 and

30 hpf and match our non-dimensionless model parameters accordingly. The characteristic frequency,

fzf was measured in vivo, and the characteristic length, Lzf , was taken as the diameter of the heart

tube. The Wo was then calculated as

Wo = Lzf

√
2π · fzf · ρzf

µzf
= 0.15, (4.3)

where fzf = 2.2 s−1 [57], ρzf = 1025 kg/m3 [15], µzf = 0.0015 kg/(m · s) [242, 243], and Lzf =

0.05 mm [20]. The occlusion ratio is assumed to be occ = 0.85 [63]. We take the characteristic

velocity to be Vpump = fzf · occ ·
Lzf

2 = 0.047 mm/s. The dimensionless frequency may then be

calculated as

f̃ =
Lzf
Vpump

· fzf = 2.3. (4.4)

For the mathematical model, the parameters values were chosen to keep the dimensionless

frequency fixed at fsim = 2.3, and hence we get the dimensionless pumping velocity of Vsim =

fsim · occ · d2 = 0.978.
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TheWo was varied by changing the dynamic viscosity, µ. For the simulations, theWosim is calcu-

lated using a characteristic length of d, the width of the tube, and dimensionless density of rho = 1000.

The simulations were performed for Wosim = {0.2, 0.4, 0.6, 0.8, 0.9, 1.0, 1.5, 2, . . . , 9, 10, 15, 20, 30}.

Note that the higher end of these values describe a fully inertial regime which may be outside of

what is found in nature. The stiffness of the target tethering points were chosen to minimize the

deformations of the boundary, i.e, to keep it rigid, and were directly correlated toWo. The motivation

for the wide range of Wo considered is that we want to compare parameter values relevant to other

types of tubular hearts, such as salps, tunicates, and insects. We also want to compare our results to

the Wo range considered in most previous DSP studies, (typically Wo > 1). The other mechanical

parameters were chosen to allow deformation and reexpansion of the heart tube on relevant timescales.

Our parameter choices are given in Table 4.3, where they have been non-dimensionalized, using the

following relations for springs (and target points) and beams, respectively,

k̃spring/target =
kspring/target

rho ∗ d ∗ V 2
sim

(4.5)

k̃beam =
kbeam

rho ∗ V 2
sim ∗ d3

. (4.6)

Note that:

• The top portion of the tube in the peristaltic cases is allowed to be flexible to conserve volume

(e.g. this section expands with the tube compresses). This is not necessary in the case of

dynamic suction pumping because the lower portion of the tube is flexible and can expand to

conserve volume.

• In the case of peristalsis, the entire motion of the boundary is moved with a preferred motion

(with the exception of the top which simply expands to conserve volume). In this set up, the

elastic forces only serve to minimize deviations from that preferred motion and to reduce high

frequency oscillations. As long as the actual motion is sufficiently close to the preferred motion,

the parameters chosen do not alter the results.

• In the case of DSP, the stretching stiffness of the bottom, untethered portion of the tube, is a

primary factor that influences the average velocity. We selected this value to give reasonable
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Mechanical Parameters Symbol DSP Value Peristalsis Value
Stretching Stiffness of the Tube k̃stube 1.3e7 3.3e6

Stretching Stiffness of Springs Across Tube k̃sbtwn 2.3e3 6.5e2

Stretching Stiffness of Target Points k̃target 1.3e5 1.3e5

Bending Coefficient of the Tube k̃beam 3.3e2 3.3e10

Stretching Stiffness of Blood Cells k̃scell 2.8e5 2.8e5

Table 4.3: Table of mechanical parameters used in the computational model. Note that k̃sbtwn gives
the stiffness coefficient of the actuating springs in the DSP model, while it describes the stiffness
coefficients of springs connecting the outer and inner layer of the top of the tube in the peristalsis
model. k̃stube is the stretching stiffness between adjacent points along the tube while k̃sbtwn gives the
stretching stiffness between opposite points along a cross-section of the tube. k̃target is the tethering
stiffness of target points, k̃beam gives the bending stiffness between adjacent points along the tube,
and k̃scell gives the stretching stiffness between points making up the blood cells.

bulk flow at higher Wo. In future studies, we will characterize how this stiffness affects average

flow.

All of the reported values have been non-dimensionalized according to Eqs. (4.5), (4.5). The

viscosity may be used to change the Wo without affecting the dimensionless stiffnesses. In other

words, viscosity can be used to vary the Wo without significantly effecting the dynamics of the

structure. Note that the Wo considered fall within the range of many biological pumps, see [15].

4.1.2 Results

In this study, we present simulations of dynamic suction pumping and peristalsis within a

closed racetrack containing flexible blood cells of varying volume fractions but uniform geometry.

The simulations were run for a range of Womersley Number, Wo ∈ [0.1, 30], and hematocrit,

V F = {0%, 5%, 10%, 15%, 20%, 25%}. Examples of the locations of the blood cells and boundaries

at different points in time are seen in Figure 4.7.

DSP Results Figure 4.7 shows snapshots from simulations of DSP at five different Womersley

numbers, Wo = {0.2, 2.0, 6.0, 10.0, 20.0}, where volume fraction is held constant at V F = 15%.

The images were taken after at 11.5, 22.5, 33.5, and 44.5 heartbeats. In the cases of Wo = 0.2

thru Wo = 2.0, there is no significant net transport for the mock blood cells as evidenced by the

negligible movement of the blood cells (note the color coding of blood cells in each quadrant). There

is, however, clear transport when Wo ≥ 6.0. Moreover, in the cases when Wo ≥ 6.0, the blood cells

begin to clump together, rather than move uniformly throughout the tube.
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Figure 4.7: A comparison of simulations with different Womersley Number, Wo =
{0.2, 2.0, 6.0, 10.0, 20.0}, but same amount of blood cells, V F = 15%. The images were taken
after at 11.5, 22.5, 33.5, and 44.5 heartbeats during the simulations. In the case of Wo = 0.2 and
Wo = 2.0, there is no visual transport for the mock blood cells; however, there is clear transport
when Wo ≥ 6.0. Moreover, in the cases when Wo ≥ 6.0, the hematrocrit begins to clump together,
rather than move uniformly throughout the tube.
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Figure 4.8: A comparison of the spatially averaged velocity vs. time over the course of the
simulation, for five cases with uniform hematocrit (V F = 15%), but varying Womersley Number,
Wo = {0.2, 2, 6, 10, 20}. The average velocity was spatially computed across a cross-section in the
center of the top of the tube. As Wo increases the amplitude of oscillations in average velocity also
increases. In the biologically relevant case, Wo = 0.2, there are slight oscillations; however, bulk net
flow is insignificant.

Keeping the volume fraction constant, we compared the spatially-averaged velocity across a

cross-section in the center of the top of the tube, for three different Womersley Numbers, Wo ∈

{0.2, 2.0, 6.0, 10.0, 20.0}. Note that deformations of this section of the tube are negligble such that

the average velocity is directly proportional to the volumetric flow rate. Figure 4.8 illustrates this

for the case of V F = 15%. From the figure, it is evident that the lower Wo case induces less net

flow than the other two higher Wo cases. However, we can also deduce that the direction of flow is

a non-linear function of Wo. Note that for Wo = 10.0, flow is moving in the opposite direction to

that of the Wo = 20.0 case.

This study has considered two orders of magnitude in Wo. Given that Wo scales like the

square root of the Re, note that our study spans four orders of magnitude in Re. For the range

of Wo considered, higher volume fractions result only in flow in the negative direction. It would

be interesting to see if this is the case for all Wo. Future studies will consider a larger and more

detailed range of Wo to better resolve the changes in flow direction.

Moreover, an example comparison of the spatially-averaged velocity vs. time for three different

volume fractions, V F = {5%, 15%, 25%}, for three specific Womersley numbers, Wo = {0.2, 2.0, 6.0},

are shown in Figure 4.9. Figures[(4.9a),(4.9b)] show the similarity of the waveforms illustrating little
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(a) (b)

(c) (d) (e)

Figure 4.9: A comparison of the spatially averaged velocity vs. time over the course of the simulation,
for varying hematocrit,V F = {5%, 15%, 25%}, for three different Womsersley Numbers, Wo = 0.2
[(4.9a), (4.9c)], Wo = 2.0 (4.9d), and Wo = 6.0 [(4.9b),(4.9e)]. The average velocity was spatially
computed across a cross-section in the center of the top of the tube. [(4.9a),(4.9b)] illustrate
how similar the waveforms are for varying volume fractions for Wo, 0.2 and 6.0, respectively.
[(4.9c),(4.9d),(4.9e)] give the average velocities, in diameters/heartbeat, over the course of the
simulation, in heartbeats.

(a) (b)

Figure 4.10: 4.10a shows the spatially- and temporally-averaged velocity for each simulation vs.
Womerseley Number for a hematocrit range of [0%, 25%]. 4.10b shows the spatially- and temporally-
averaged magnitude of velocity vs. Wo for a hematocrit range of [0%, 25%].
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Figure 4.11: A comparison of simulations for two different Womersley Numbers, Wo = {0.2, 2.0},
but same hematocrit, V F = 15%. The images were taken after at 1.5, 2.5, 3.5, and 4.5 heartbeats
during the simulations. It is clear that there is significant mixing of the blood cells with peristalsis,
as the colored sections begin to mix

effect of blood cells on bulk flow patterns, for all three Wo. [(4.9c),(4.9d),(4.9e)] give the spatially

averaged velocities (in diameters/heartbeat) vs. time over the course of the simulation. Time is

given in number of heartbeats. In the Wo = 0.2 case, the average velocities asymptotically increase

until they reach a periodic cycle. It is clear the maximal flow rates in both the Wo = 0.2 and

Wo = 2.0 cases are multiple orders of magnitude below one diameter/heartbeat. These are well

below the experimentally observed velocity of ∼ 0.9 diameters/heartbeat recorded in zebrafish [65].

To quantify the effect of blood cells further, spatially- and temporally-averaged velocities for

various Wo and hematocrits were compared. This is illustrated in Figure 4.10. From Figure 4.10a, it

is clear that flow rates are a non-linear function ofWo. The case with zero hematocrit is in agreement

with previous results reported in [20]. Moreover, the addition of hematocrit does not significantly

perturb flow rates for Wo . 10, as seen in Figure 4.10b, except for the case where Wo = 1.5. In the

case of Wo = 1.5, the addition of hematocrit affects flow rates; however, absolute bulk flow rates are

minimal over the range of Wo considered. Furthermore, for Wo & 10, the addition of hematocrit

affects flow rates in a non-linear fashion.

Peristalsis Results Figure(4.11) shows snapshots from simulations for two different Womersley

numbers, Wo = {0.2, 2.0}, where hematocrit is held constant at V F = 15%. The images were taken

after 1.5, 2.5, 3.5, and 4.5 heart beats during the simulations. It is clear from both simulations that

there is significant bulk flow throughout the tube. Moreover, significant mixing is observed in both
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(a)

(b) (c)

Figure 4.12: A comparison of the spatially averaged velocity vs. time over the course of the simulation,
for hematocrit,V F = 15%, for three different Womsersley Numbers, Wo = 0.2, 2, 20 is shown in
(4.12a). The spatially-averaged velocity was computed across a cross-section in the center of the top
of the tube, given in diameters/heartbeat. (4.12b) and (4.12c) give the spatially-averaged velocities
for Wo = 0.2 and Wo = 20, respectively, for three volume fractions, V F = 5%, 15%, 25%.
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cases. Note that although the top portion of the racetrack is elastic, it has a relatively high bending

rigidity. The top of the tube expands just enough to compensate for the volume of the bottom of

the tube that is lost due to the presence of the peristaltic wave.

The volume fraction was kept constant, at V F = 15%, in Figure(4.12a) to explore the effect

of scaling on bulk flow for Wo = 0.2, 2.0, 20.0. The spatially-averaged velocity across the top of

the tube, given in diameters/heartbeat, is similar between all three cases of Wo. Furthermore the

direction of flow is consistent in all cases, with bulk flow moving counterclockwise around the tube,

with a sharp decrease in velocity, showing flow going in the opposite direction, at the end of each

heartbeat.

Figures(4.12b) and (4.12c) illustrate the effect of varying hematocrit for simulations withWo = 0.2

and Wo = 20, respectively. In both cases the waveforms look similar, suggesting the addition of

blood cells does not significantly affect bulk flow rates. However, we note that the sharp decrease in

velocity at the end of the heartbeat is more pronounced in the Wo = 0.2 case, than in the Wo = 20

case.

4.1.3 Discussion and Conclusions

In this section, two-dimensional immersed boundary simulations were used to model dynamic

suction pumping and peristalsis for a single actuation frequency over a range of Womerseley numbers

and hematocrits relevant to valveless, tubular hearts. When strong net flow was generated in the

tube at higher Wo, blood cells clumped together, and did not flow uniformly throughout the tube.

The spatially- and temporally- averaged velocities across a cross-section along the top of the tube

showed a non-linear relationship between net flow rates and Wo for DSP. The effect of hematocrit

on the net flow rate was significant for Wo & 10 and was nonlinear. In particular, the varying levels

of hematocrit changed the direction of flow for DSP for Wo on the order of 10. The addition of

blood cells did not enhance the weak net flows produced for Wo < 1. These results highlight the

complex dynamics governing dynamic suction pumping.

For DSP at low Wo and for the range of tube material properties considered here, the fluid is

nearly-reversible. This reversibility may explain in part why there is little net flow in the tube for

the case of DSP (a reversible motion) at V F = 0. This result is in agreement with [20, 21]. Previous

studies have shown enhanced fluid transport and animal locomotion in non-Newtonian fluids at

low Re and Wo [244]. Since the addition of blood cells in a Newtonian fluid makes the bulk fluid
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effectively non-Newtonian, it is possible that the addition of blood cells could make the flow in

tubular hearts irreversible. For the parameters considered here, any such effect was negligible.

For the case of peristalsis, flow was consistently driven around the racetrack for all Wo and for

all hematocrits. Similar to DSP, the addition of hematocrit did not significantly change net flow

rates at low Wo. Unlike the case of DSP, the addition of hematocrit also did not significantly alter

the velocity waveform or the net flow at higher Wo.

Although the bulk transport of fluid was not significantly changed, the addition of blood cells

may affect the shear stresses experienced by the cardiac cells and the amount of mixing within the

heart tube. The peristalsis simulations show enhanced mixing as compared to that of DSP at the

same Wo and V F . Furthermore for Wo = 0.2, 2, peristalsis was able achieve similar levels of blood

cell mixing an order of magnitude faster than the DSP simulation at Wo = 20. These results are

important when considering the role that fluid mixing and shear stress may play in cardiogenesis.

Experimental evidence has shown blood flow, and more specifically hemodynamic forces, are

essential for proper heart morphogenesis [12]. Furthermore, it is evident that there is a strongly

coupled relationship between the underlying hemodynamics, cardiac electrophysiology, and activation

of some genetic regulatory networks. For example, hemodynamics is thought to regulate the

development of the pacemakers and the conduction of action potentials in the heart [94, 14]. Since

there is direct feedback between the underlying electrophysiology and the flow induced by muscle

contraction, changes in traveling action potentials will affect the hemodynamic forces felt at the

endothelial layer, e.g., shear stress and pressure. These changes may then result in changes in gene

expression via epigenetic signaling mechanisms, e.g., mechanotransduction. However, the exact

pipelines that contribute to mechanotransduction are not completely understood [245].

4.2 Electro-dynamical Pumping

In this section we explore a model coupling electrophysiology, muscle-force production, and flow

induction using a computational electro-dynamical model. The propagation of action potentials are

coupled to muscular contraction and hence the overall pumping dynamics. Upon comparison to the

previous model, the electro-dynamical model does not use prescribed motion, but rather the pumping

dynamics are fully coupled to an electrophysiology model. We will perturb the diffusion parameter in

the electrophysiology model to investigate the bifurcation in dynamics of action potential propagation.

This bifurcation is able to two different pumping regimes, i.e., dynamic suction pumping as well as
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peristalsis. The electrophysiology model is governed by the FitzHugh-Nagumo equations.

4.2.1 Computational Model

We numerically model a 2D closed racetrack where the walls of the tube are modeled as 1D

fibers. The closed tube is composed of two straight portions, of equal length, connected by two

half circles, of equal inner and equal outer radii. The tube, or racetrack, has uniform diameter

throughout. This is similar to the model geometry as in Figure 4.5; however, the material properties

are slightly different and we do not include mock blood cells in this model. Moreover, unlike Figure

4.5, we include the presence of an idealized stiff pericardium surrounding the flexible region of the

heart tube.

The tunicate heart consists of a myocardium which is surrounded by a stiff pericardium [246, 95],

which provides structural support to the myocardium. Muscle fibers spiral around the heart tube

itself, and action potentials propagate to induce myocardial contraction. These action potentials

have been previously measured [223]. Myocardial contractions may begin at either end of the heart

tube, allowing the propagation of the action potential to occur in either direction [247]. However,

we will not concern ourselves with flow reversals in this model. Although the tunicate heart tube

has different material properties and physiological properties than the vertebrate embryonic heart,

it still is an interesting model for vertebrate heart morphogenesis [225]. However, the conduction

properties, e.g., velocities, of action potentials are much more uniform in tunicates than mammalian

hearts [248].

Figure 4.13: Computational geometry for the electro-mechanical pumping model. The racetrack is
held stiff (black), except for the bottom straight-tube portion, which is flexible (red). There is a stiff
pericardium model surrounding the flexible region (blue).
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The computational model we investigate is seen in Figure 4.13. Linear springs and beams connect

adjacent Lagrangian points in the flexible region of the racetrack geometry. All other Lagrangian

points of the boundary are modeled using target points, to hold the stiff portions of the racetrack

and pericardium region as rigid as possible. The parameters used in the model are found in Table

4.4 below.

Parameter Value

Length/Width of comp. domain (m) 5.0× 10−4

Diameter of tube [d] (m) 3.5× 10−5

Outer Radius [Ro] (m) 1× 10−5

Inner Radius [Ri] (m) d−Ro

Length of Straight Tube (m) 5.0× 10−4

Eulerian Resolution [dx] (m) 8.33× 10−7

Lagrangian Resolution [ds] (m) 4.17× 10−7

Density of fluid (ρ)
[
kg
m3

]
1025

Viscosity of fluid (µ)
[
kg
ms

]
varied

Stretching stiffness of the boundary (kspr)
[
kg
s2

]
3.24× 105

Stretching stiffness of target points (ktarget)[Nm2] 3.24× 105

Bending coefficient of boundary (kbeam)
[
kg
s2

]
3.24× 105

Table 4.4: Table of the parameters associated with the fluid and the immersed boundary fiber
models.

Instead of prescribing contraction, we develop a model for the underlying electrophysiology of the

heart, i.e., traveling action potentials arising from a single pacemaker region, to couple to myocardial

contraction and hence intracardiac fluid flow. The model of action potential propagation is given by

the FitzHugh-Nagumo equations, as in Section 3.3.4 and [249, 22], and below,

∂v

∂t
= D∇2v + v(v − va)(v − 1)− w − I(t) (4.7)

∂w

∂t
= ε(v − γw), (4.8)

where v(x, t) is the membrane potential, w(x, t) is the blocking mechanism, D is the diffusion
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rate of the membrane potential, va is the threshold potential, γ is the resetting rate, ε is the

blocking strength parameter, and I(t) is an applied current, e.g., an initial stimulus potentially from

pacemaker signal activation. Note that v is the action potential and that w can be thought to

model a sodium blocking channel. We note that the FitzHugh-Nagumo equations (4.7)-(4.8) are a

reduced order model of the Hodgkin-Huxley equations, which were the first quantitative model to

describe the propagation of an electrical signal across excitable cells [250]. The parameters used in

the electrophysiology model are found in Table 4.5.

Parameter Value

Threshold potential [va] 0.1

Strength of blocking [ε] 0.1

Diffusive coefficient [D] 0.1− 200

Resetting rate [γ] 0.5

Current injection [I] 0.5

Frequency [f ] (Hz) 1.0

Table 4.5: Table of the parameters associated with the FitzHugh-Nagumo electrophysiology model.

Next we need to interpolate the information from the electrophysiology model to the fluid-

structure interaction solver, i.e., immersed boundary method. Time is scaled in order to match the

dynamics of the generated action potentials to the desired active wave of contraction and is given by:

dtf =
dtF
T
, (4.9)

where dt is the time-step associated with the fluid solver, F is a non-dimensional scaling parameter,

and T is the desired pumping period. The spatial location, x, in (4.7)-(4.8) is also scaled to match

the dynamics of the active wave of contraction on the tube. When the propagating action potential

reaches one of the muscles along the tube, the associated spring stiffness of said muscle model is

given by

ke(x, t) = km
(
v4(x, t)

)
. (4.10)

The simplified muscle model is given by a dynamic spring stiffness coefficient, given by ke(x, t),
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which is a non-linear function of the traveling action potential, v(x, t). This idea was adapted from

Baird et al. [21, 22]. The force generated by the springs that connect the bottom and top of the

elastic tube can then be computed. These forces represents muscular contraction. The value of km

is tuned to produce the amount of contraction observed in Ciona hearts, as in [21, 22].

Figure 4.14: Schematic of electrodynamical pumping. (1) The tube at rest; the springs connecting
the top and bottom of the tube are the muscles. (2) The pacemaker initates an action potential,
in which the tube will contract based on the magnitude of the signal (3)-(4) The action potential
propagates along the tube, induing contraction.

The idea for electro-dynamic pumping can be seen in Figure 4.14, which is a schematic for

electro-dynamical pumping behavior. First the tube is at rest until a pacemaker initiates a potential

signal, which contracts the tube in one singular region. Next the action potential propagates along

the tube inducing contraction. Once the action potential passes outside a region on the tube, that

location no longer has active contraction, but can return to its resting position.
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Figure 4.15: Schematic of electrodynamical pumping. (1) The tube at rest; the springs connecting
the top and bottom of the tube are the muscles. (2) The pacemaker initates an action potential,
in which the tube will contract based on the magnitude of the signal (3)-(4) The action potential
propagates along the tube, induing contraction.

Furthermore the main electrophysiology idea behind the model is illustrated in Figure 4.15. In

diagram 1 the flexible tube is at rest. Next 2 depicts a pacemaker initiating an input signal (current).

Then that voltage (action potential) travels down the tube, while the input signal dissipates. Once

the action potential reaches a muscle fiber, the tube contracts based on a non-linear relationship

between spring stiffness and the magnitude of the action potential (voltage).
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4.2.2 Results of the electro-dynamical model

In this study, we conducted numerical experiments of the electro-dynamic pumping model, which

encompassed fully coupled electrophysiology to pumping behavior for a heart tube, modeling as

a closed racetrack geometry. We investigated various diffusivities, D, which give rise to different

pumping regimes, e.g., either a ‘dynamic suction pumping-esque’ or ‘peristaltic-like’ pumping regime.

Furthermore, we explored these regimes for over 3 orders of magnitude in Wo.

Results of the FitzHugh-Nagumo Model Here we present the varying action potential dy-

namics given via the FitzHugh-Nagumo equation, which models the electrophysiology. We explored

this model for a variety of diffusive coefficients, D = {0.1, 1.0, 10.0, 100.0}.

Figure 4.16: Different traveling wave propagation properties arising out of the FitzHugh-Nagumo
equations for varying diffusivities, D = {0.1, 1.0, 10.0, 100.0}.

Figure 4.16 illustrates the kinds of traveling action potentials that arise out of the electrophysiology

model. It is clear that the D = 0.1 case resembles a signal that could be reminiscent of that of

dynamic suction puming, where as D gives rise to a propagating action potential that could model

a more peristaltic-like contraction. It is clear that as diffusivity increases, the waves propagate
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outwards, and with greater wave-speed. Furthermore, the wave-form itself gets wider.

Results of the electro-dynamical heart tube model In this section we present the results

describing how bulk flow rates are affected by varying the diffusivity, to capture different pumping

behaviors for a variety of Wo.

Figure 4.17: The non-dimensional spatially-averaged velocity computed across a cross-section of
the top of the race-track geometry vs non-dimensional time for D = 0.1, e.g., the ‘dynamic suction
pumping’ regime, forWo = {0.1, 1.0, 10.0}. The zoomed in portion illustrates the resulting wave-form
and the high frequency oscillations that result from this pumping regime.
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Figure 4.18: The non-dimensional spatially-averaged velocity computed across a cross-section of the
top of the race-track geometry vs non-dimensional time for D = 100.0, e.g., the ‘peristaltic’ regime,
for Wo = {0.1, 1.0, 10.0}. The zoomed in portion illustrates the resulting wave-form.

Figures 4.17 and 4.18 illustrate the non-dimensional spatially-averaged velocity computed across

a cross-section of the top of the race-track geometry vs non-dimensional time for D = 0.1 (Figure

4.17) and D = 100.0 (Figure 4.18). It is clear that when D = 0.1 there is not significant bulk flow

produced regardless of Wo, unlike the case when D = 100.0, where significant bulk flow is produced

over all Wo = {0.1, 10, 10}. It is also clear that the wave-form produced for D = 0.1 undergoes many

more high frequency oscillations as compared to the case for D = 100.

Comparing corresponding Wo pumping mechanisms for a variety of D = {0.1, 1.0, 10.0, 100.0}

are shown in Figure 4.19, where Figure 4.19a compares pumping regimes for Wo = 0.1 and Figure

4.19b for Wo = 10. It is clear that in both cases that the most bulk flow is produced when D = 100,

and some flow is produced in the cases of D = {1, 10}. There is still backflow in the D = 100 case

and less overall backflow in the D = 10 case.

Furthermore, the wave-form in the D = 100 case is different between the Wo = 0.1 and Wo = 10

cases. There is a single peak for the case when Wo = 10 and a dual peaks for Wo = 0.1 for the

forward flow; however, in the backflow, the situation is reversed, where a dual-peak is observed for

Wo = 10 and a single peak for Wo = 0.1.

168



(a)

(b)

Figure 4.19: A comparison of non-dimensional spatially-averaged velocity computed across a cross-
section at the top of the racetrack vs non-dimensional time in the simulation for varying diffusive
coefficients, D = {0.1, 1.0, 10.0, 100.0}. The two plots compare different Wo, e.g., (a) Wo = 0.1 and
(b) Wo = 10.

In attempt to maximize bulk flow for the dynamic suction pumping-esque regime, the stretching-

stiffness and bending stiffness coefficients of the tube were varied. The results are shown in Figure

4.20. It is clear that as the stiffness is varied there is a non-linear relationships between flow speed

(spatially- and temporally-averaged non-dimensional velocity across a cross-section of the racetrack)
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and stiffness. However, not a considerable amount of more bulk flow was produced from increasing

these stiffness coefficients.

Figure 4.20: A plot of non-dimensional spatially-averaged velocity computed across a cross-
section at the top of the racetrack vs the non-dimensional stretching and bending stiffness co-
efficients for pumping in the ‘dynamic suction pumping’ regime, for a variety of diffusivities,
D = {0.1, 0.25, 0.5, 0.75, 1.0}.

Figure 4.21: A comparison of the spatially- and temporally-averaged non-dimensional veloci-
ties computed across a cross-section of the racetrack vs. Wo for varying diffusivities, D =
{0.1, 1.0, 10.0, 100.0}.

Lastly we compared the spatially- and temporally-averaged non-dimensional velocities across a
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cross-section of the racetrack against Wo for a variety of D. The results are shown in Figure 4.21. It

is clear there is a non-linear relationship in average velocity and scale arising from this model of

pumping in every pumping regime, given by D. Furthermore, the highest bulk flow rates were seen

in the case of D = 100 for Wo ∼ 0.8, which correspond to the Wo around that of tunicate tubular

hearts [20, 21].

4.2.3 Discussion and Conclusion of Electro-dynamic Model

This 2D model coupled the propagation of action potentials, given via the FitzHugh-Nagumo

equations, to the force generation and myocardial contraction, given through a non-linear spring-like

muscle model, to induce pumping behavior in a flexible tube, where the fully coupled fluid-structure

interaction model was solved using the immersed boundary method. This model was first described

in [22]. We explored the effect of perturbing a diffusive coefficient in the electrophysiology model to

capture different pumping regimes.

It was clear that by varying this diffusive term, D, the model was able to recreate a spectrum

of pumping mechanisms, ranging from one that in which the action potential remained localized

and did not diffusive, i.e., a dynamic suction pumping-esque behavior, and one where the action

potential diffused along the heart tube in as a more traveling wave, e.g., peristaltic-like active wave

of contraction. Our model showed that when D was in the more peristaltic-like regime, i.e., D ∼ 100,

more bulk flow was produced in the racetrack geometry, as compared to more negligible amounts

from the dynamic suction pumping-esque regime, D ∼ 0.1. This result was consistent for the range

of Wo considered.

Moreover, in all cases considered, there was a non-linear relationship between average flow

rate, scale (Wo), and diffusivity (pumping behavior). More bulk flow was produced on average

(both spatially and temporally), with a maximum around Wo ∼ 0.8 than for higher Wo, up to

Wo = 30, in the peristalic-like regime. However, perturbing the material properties of the tube could

potentially affect bulk flow rates across all pumping regimes, given by D. Our focus was limited

to perturbing the stretching and bending stiffnesses of the tube specifically within the dynamic

suction pumping-esque regime, D ∼ [0.1, 1]. Furthermore, our study only considered increasing the

stiffnesses and not decreasing them. For the regime and material properties considered, we found a

non-linear relationship between flow rates and stiffness.

As blood flow and the resulting hemodynamic forces are essential for proper heart development

171



[12], it is important that the pumping model capture as much biology as possible. Each pumping

regime considered here, via the specified model of action potential propagation, will give rise to

a different force distribution along the endothelial lining of the heart and hence possibly change

epigenetic signal that gets transmitted through mechanotransduction [251, 252]. Furthermore the

flow profiles resulting from each pumping mechanism would be different. These differences in the

flow patterns itself could impact the way morphogens advect and diffuse during embryogenesis

[253, 254]. A preliminary simulation of an underlying concentration gradient was modeling using

this electrophysiology-FSI model in Section 3.3.4, and there are many interesting biological questions

to explore.

4.3 Resonant Pumping

In this section we investigate resonant properties elastic tubes, specifically interested in deciphering

how pumping via dynamic suction pumping near resonant frequencies may induce more bulk flow.

Furthermore we also investigate how the addition of mass, which changes the effective damping

if all other parameters are held constant, affects overall bulk flow rates in such pumping systems.

We will first determine resonant frequencies for the first and second modes of vibration. Next we

explore pumping near such resonant modes. Lastly, we add mass to the boundary and investigate

pumping when the tube is over-,under-, and critically-damped. Previous studies have looked at

resonant properties of impedance pumping [16], but have not considered a massive boundary, nor

did they use the IB formulation for investigating the phenomena.

Figure 4.22: Flow chart illustrating the flow of this section.

4.3.1 Computational Model

We numerically model a 2D open-branched geometry, where the walls of the tube are modeled as

1D fibers. The straight section of the tube is flexible with uniform bending and stretching stiffnesses;

however, the branched ends are held nearly rigid. The computational geometry is illustrated in
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Figure 4.23. This geometry was motivated by branching vessels in tunicate embryonic hearts, see

Figure 4.24, which was adapted from [36].

Figure 4.23: Computational geometry for the resonance studies. The straight section (dotted red) is
flexible, while the branched vessels (black) are held nearly rigid. The springs connecting the top
and bottom of a subset of the flexible section are the mock muscles which induce the impedance
pumping behavior.

Figure 4.24: Dextran was injected at the posterior end of the heart while the heart pumped in the
branchail direction (A) and dextran injected at the anterior end of the heart, while the heart pumped
in the visceral direction. The dextran helps visualize the morphology of the heart and the branching
vessels, motivation our computational geometry in Figure 4.23. The scale bar in B at the bottom
left is 10 mm. This figure and description was adapted from [36].

The computational model we investigate is seen in Figure 4.23. The flexible region is composed

of linear springs and beams connecting adjacent Lagrangian points. All other Lagrangian points

of the boundary are modeled using target points, to hold the branching vessels nearly rigid. The

parameters used in the model are found in Table 4.6. Also, no slip boundary conditions are enforced

on all sides of the computational domain. This is to reduce the amount of flow artifacts from periodic
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boundary conditions for the open branched tube geometry.

Parameter Value

Length/Width of comp. domain (m) 1.0

Diameter of tube [d] (m) 0.1

Length of Flexible Portion of Straight Tube (m) 0.4

Length of Rigid Portion on Each End of Straight Tube (m) 0.125

Angle Between Branched Vessels (radians) π
6

Width of Branched Vessels (m) 0.05

Width of Actuator Region (m) 0.04

Distance to where Actuator Region begins (from left flexible region) (m) 0.085

Eulerian Resolution [dx] (m) 1.95× 10−3

Lagrangian Resolution [ds] (m) 9.77× 10−4

Density of fluid (ρ)
[
kg
m3

]
1000

Viscosity of fluid (µ)
[
kg
ms

]
varied

Frequency of Impedance Pump (s−1) varied

Stretching stiffness of the boundary (kspr)
[
kg
s2

]
2.05× 103

Stretching stiffness of target points (ktarget)[Nm2] 2.05× 103

Bending coefficient of boundary (kbeam)
[
kg
s2

]
5.38× 108

Mass of Massive Points (kg) varied

Table 4.6: Table of the parameters associated with the fluid and the immersed boundary fiber models
for the resonance studies.

4.3.2 Results of Resonant Studies

Using this model we first calculated the resonant frequencies of the first and second modes of

vibrations for the a flexible tube with material properties described in Table 4.6. After computing

those frequencies we then investigated pumping performance near such resonant frequencies. Finally

we added damping to the system by modeling the flexible region with massive points and explored

the role damping has on bulk transport when pumping near resonance.
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Free Vibration Studies We started by conducting free vibration studies to determine resonant

frequencies for a variety of fluid viscosities. The tube was pulled from its equilibrium position

(preferred configuration), e.g., straight geometry, as in a way that geometrically resembles the first

or second mode of vibration. The first and second modes of vibration waveforms are illustrated

in Figure 4.25. The tube is then released and is free to oscillate and/or return to its equilibrium

position.

Figure 4.25: Illustrating the 1st and 2nd vibrational mode waveforms. The waveforms are in blue,
while the solid black represents rigid sections along the straight portion, and the dotted black line
resembles the tube’s equilibrium position.

Figure 4.26 shows the oscillatory dynamics for two different vibration studies, corresponding

to differing vibrational modes and viscosities. It is clear that in both the first and second mode,

with the material properties of the tube described in Table 4.6, that for a viscosity of µ = 1.0 kg
m·s

(blue), the tube is under-damped, while for a viscosity of µ = 3.5 kg
m·s (pink), the tube appears either

critically- or over-damped. Note that for the two different vibration modes, a different resonant

frequency emerges, with that of the 1st mode being almost an order of magnitude less than that

of the 2nd mode. We comment that the third mode could have been investigated as well, but we

forewent to include that in this study.
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Figure 4.26: Free vibration studies for two situations, where each case corresponds to a different
vibration mode, 1st (left) and 2nd (right), for the same flexible geometry. However, in each case, there
are two simulation snapshots shown corresponding to two different viscosities, i.e., µ = 1.0 kg

m·s (blue)
and µ = 3.5 kg

m·s (pink). It is clear that the 1st and 2nd mode have differing resonant frequencies.

Finally we can perform similar free vibration tests for a range of viscosities for both the first and

second modes of vibration. A figure illustrating the oscillations associated with varying viscosities

for the first and second mode is shown in Figure 4.27. This plot shows the displacement from

equilibrium of the peaks in the first and second mode. It is evident that for some viscosities the

system is over-, under-, or critically-damped. The resonant frequencies we found in our study are

shown in Figure 4.28. Over the range of viscosities considered, e.g., ∼ [6× 10−3, 40], the resonant
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frequency for the first mode is approximately found to be constant around fRes1 ∼ 0.28s−1. The

resonant frequency of the second mode slightly decreases as viscosity increases.

(a) (b)

Figure 4.27: Plots showing the displacement from equilibrium of the peaks of the first and second
modes of vibration during the free vibration tests. It is clear that for some viscosities the system is
over-,-under-, and critically-damped.

Although while changing the viscosity of the fluid, will change the Womersley Number, Wo, we

find over this range of viscosities, the resonant frequencies do not differ significantly. Because of this,

it will be possible to compare simulations with differing Wo, but similar resonant frequencies, to see

how much the resonance properties of the tube affect the resulting bulk flows rates. We will now

explore pumping these tubes near and away from the first and second vibrational mode’s resonances

to investigate such effects.
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Figure 4.28: Numerically found resonant frequencies in both the first and second vibrational modes
for a flexible tube immersed in a fluid. A free vibration test was performed in each viscosity and
vibrational mode.

Pumping Near the 1st and 2nd Mode Resonances We begin by pumping the branched tube

at the first and second vibrational mode’s resonances, as well as, a frequency in the middle, to

observe the passive elastic waveforms, which result from dynamic suction pumping. We ran these

simulations for a viscosity of µ = 1.75 kg
m·s and f1st = 0.28Hz, f2nd = 2.03Hz, and fm = 0.9Hz,

where f1st and f2nd are the first and second mode resonances, respectively, and fm is some arbitrary

frequency chosen between those resonance frequencies.

First, we observed the passive elastic waveforms arising from pumping at the first and second

mode resonances. Snapshots of the pumping tube for the first and second mode resonances are found

in Figures 4.29a and 4.29b, respectively. The orange bar gives the active region of actuation along

the tube, while the blue coloring on the tube at 50% of one dynamic suction pumping period, T ,

illustrate that presence of the respective mode’s waveform arising from pumping at that mode’s

resonance.
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(a)

(b)

Figure 4.29: Illustrating the pumping dynamics and the resulting passive elastic waves for the first
(a) and second (b) mode resonances for varying snapshots from a single period, T , of dynamic suction
pumping. The orange bar represents the active region of actuation. The blue coloring of the tube
(at 50% of a period) show that the vibrational mode waveform shows up during the pumping.
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It is clear that the resulting passive elastic waves are vastly different when pumping at either the

first or second vibrational mode’s resonant frequencies. A simulation of a tube being pumped at

a frequency between those resonance frequencies, but the same viscosity, is shown in Figure 4.30.

Comparing the passive elastic waveforms from Figure 4.30 to 4.29, it is evident that the passive

elastic waveforms are different. However, the case of fm = 0.9Hz has both the first and second mode

waveforms arising during the course of one period of dynamic suction pumping, as shown by the

blue coloring of the flexible tube in Figure 4.30.

Figure 4.30: Illustrating the passive elastic waves arising from pumping the tube at a frequency of
fm = 0.9Hz and viscosity, µ = 1.75 kg

m·s . The orange bar represents the region of active contraction.
The blue coloring of the tube represents where the first and second mode waveforms are visible
during one period of dynamic suction pumping.

Next we performed a frequency sweep for the case of mu = 1.75 kg
m·s . Figure 4.31 shows snapshots

of a few select simulations. The pink dots represent passive tracers in the flow that move at the local

fluid velocities, but have no effect on the flow itself. From qualitative observations it is clear that

there is a non-linear relationship between frequency and flow, and hence also Wo. Moverover the

select cases illustrate that more bulk flow is going towards the right hand side of the computational

domain. The cases of f = 0.28Hz (the 1st mode resonance) and f = 0.55Hz seemed to produce the

most bulk flow, followed by the case with f = 2.03Hz (the 2nd mode resonance), while the case with

f = 1.1Hz produced the least bulk flow. Note that the backscattering of the passive tracers on the
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right side of the branched vessels is because of the no slip boundary conditions enforced on the walls

of the computational domain.

Although Figure 4.31 compares flow behavior at corresponding pumping points throughout the

simulation, it is important to note that since each case is being pumped at a different frequency, the

total amount of bulk transport will be different at a particular time. For example, in the case of

f = 0.28Hz, which seemingly produced the most bulk flow after 5.5 dynamic suction pumps, in that

same amount of time it took to achieve those 5.5 pumps, the case for f = 2.03Hz will have almost

completed 40 complete pumps.
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Figure 4.31: Snapshots from simulations pumping at varying frequencies, qualitatively showing bulk
flow properties via the movement of passive tracers in the flow. The tube was pumped at he first
and second vibrational mode resonance frequencies, f = 0.28Hz and f = 2.03Hz, respectively, as
well as two other frequencies in the between those values, f = {0.55, 1.1}Hz.

We can now compare the bulk flow dynamics for the case of f = 0.28Hz for µ = {0.07, 1.75} kgm·s ,

as the resonant frequency remains approximately equal as shown in Figure 4.28. The snapshot

illustrated in Figure 4.32 compares the two cases after 3.75 dynamic suction pumps as well as one

later image from 10.5 impedance pumps for the case of µ = 1.75 kg
m·s . There appears to be more bulk
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flow per pump of the passive tracers in the case of lower viscosity case, µ = 0.07 kg
m·s . Furthermore,

from this observation, inconjuction with observations from Figure 4.31, we see there is a complex

non-linear relationship between flow rates, viscosity, and frequency.

Figure 4.32: Snapshots comparing qualitative bulk flow for two simulations pumping at the same
frequency f = 0.28Hz (first mode resonance), but two different viscosities µ = {0.07, 1.75} kgm·s .
There appears to be more bulk from in the case with µ = 1.75 kg

m·s .

We will now investigate the effect of adding mass to the flexible boundary, using the massive

point fiber model of immersed boundary, as described in Section 3.3.2.

Effects of Damping While Pumping Near Resonance We begin this study by quickly

recalling that each of our studies in the previous section used a dynamic viscosity of µ = 1.75 kg
m·s .

Here we begin by showing snapshots from simulations with lower viscosity, µ = 0.07 kg
m·s and pumping

at the first mode’s vibrational resonant frequency f = 0.55Hz, which showed good bulk flow in

Figure 4.31. Snapshots from this simulation are shown in Figure 4.33.
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Figure 4.33: Snapshots from simulations with viscosity µ = 0.07 kg
m·s and at frequencies f =

{0.28, 0.55}Hz., illustrating the waveforms of the passive elastic waves. In each case there is a strong
interaction of the tube walls during each dynamic suction pump.

From Figure 4.33 we observe that, in the case of f = 0.28Hz, the tube oscillates more (i.e., at

snapshots 88%T and 100%T ) than the case with viscosity µ = 1.75 kg
m·s in Figure 4.26. Furthermore,

another qualitative difference is that there is almost full occlusion for µ = 0.07 kg
m·s in Figure 4.33.

Moreover, this occlusion causes an highly oscillatory interaction between the top and bottom of the

tube walls for a fraction of the entire pumping cycle.
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We now add massive points to the boundary. The hypothesis is that the added mass will add

extra inertia to the boundary. This could potentially introduce new dynamics to the passive elastic

waveforms, which could affect bulk flow rates, for better or worse. Note that adding additional mass

will lower the effective damping. Recall the damping of a spring, as described in Section 3.2.1,

ζ =
b

2
√
mk

, (4.11)

where b is the damping coefficient which is proportional to viscosity, k is the spring stiffness, and m

is the effective mass. The effective mass is a sum of the boundary layer plus the boundary mass.

Hence adding mass decreases damping ratio, and we note that when the damping ratio is less than

one, the system will be under-damped.

We first illustrate the change in the passive elastic waves during pumping due to added mass

on the boundary. Each mass point is set at 2.0kg with a mass stiffness coefficient of 5 × 107 kg
s2
,

while pumping at the first mode resonance. It is clear that the added mass had an impact on the

waveforms of the passive elastic waves, essentially decreasing the amplitude of oscillation, while

simultaneously adding in extra inertia. However, the resulting passive elastic waves still briefly took

on the waveform associated with the first mode’s waveform. This behavior is illustrated in Figure

4.34.
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Figure 4.34: Snapshots from simulations with viscosity µ = 0.07 kg
m·s and at frequencies f =

{0.28, 0.55}Hz., illustrating the waveforms of the passive elastic waves. In each case there is a strong
interaction of the tube walls during each dynamic suction pump.

Next we can compare bulk flow rates between three cases - one case with no mass added and

two cases with added masses of m = 0.2 and 2.0kg. A simple qualitative comparison is shown in

Figure 4.35, which uses passive tracers to illustrate the bulk flow for subsequent pumping cycles. All

cases pumped at a frequency of f = 0.28Hz (the resonant frequency of the 1st vibrational mode)

and viscosity of µ = 1.75 kg
m·s . Note that both added mass cases use an associated mass tethering

stiffness of 5 × 107 kg
s2
. Both cases of added mass qualitatively produced more bulk flow than the

case without mass; however, the case with m = 0.2kg seems to have produced more bulk flow than

the case of m = 2.0kg. Hence there appears to be a complex non-linear relationship between added

mass to the boundary and performance of dynamic suction pumps.
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Figure 4.35: Snapshots from simulations with differing amounts of added mass to the boundary,
while pumping at the same frequency (f = 0.28Hz) and viscosity (µ = 1.75 kg

m·s .

4.3.3 Discussion and Conclusion for DSPs Pumping at Resonance

The preliminary simulations performed here illustrate that exploring the resonance properties of

dynamic suction pumping leads to interesting behavior. We first found that over a large regime of

viscosities, that the resonance properties of a flexible tube, with material properties given in Table

4.6, show little dependence on viscosity for the first vibrational mode’s resonant frequency, while the

second mode’s resonant frequency depended slightly on viscosity. Using this information allows once

to directly compare simulations with the same resonance properties, while varying viscosity (and

hence Wo).
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Next we showed that while pumping at the first and second mode resonant frequencies that the

resulting passive elastic waves from impedance pumping take on that mode’s associated vibrational

waveform. This remained consistent even in the case of adding mass to the boundaries. Furthermore

we saw a non-linear relationship between bulk flow and frequency. Moreover, we witnessed that

pumping near resonant frequencies seems to produce more bulk flow, although pumping at the

second mode’s resonance frequency did not qualitatively produce more bulk than pumping at a

frequency near the first mode’s.

Lastly adding mass to the boundary had a significant effect on the resulting passive elastic

waveforms from dynamic suction pumping. We saw that the effect of mass looked to decrease the

amplitude of oscillation, but add extra oscillatory behavior by added inertial effects on the boundary,

and hence had an impact on bulk flow rates. For the simulations performed, we qualitatively showed

that adding mass to the boundary had a non-linear effect on bulk flow. The added mass has an

effect to lower the over-all damping of the system, which seems to significantly contribute to bulk

flow rates in dynamic suction pumping.

Although dynamic suction pumping is an easy to prescribe pumping mechanism, the relationships

between all parameters of the system (frequency, material properties, viscosity, e.g., scale) and bulk

flow rates are very complex in nature. More work can be done in trying to understand the details of

these very intricate, non-linear relationships.
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CHAPTER 5

Flow Through Embryonic Cardiac Trabeculae

Micro changes in air density, my ass.

-Ripley (Alien)

5.1 Trabeculation Introduction

Fluid dynamics is important to organogenesis in many systems. The advection and diffusion

of morphogens as well as the hemodynamic forces generated are known to regulate morphogenesis

[255]. Forces such as shear stress and pressure may be key components that activate developmental

regulatory networks [49]. These mechanical forces act on the cardiac cells, where the mechanical

stimuli is then transmitted to the interior of the cell via intracellular signalling pathways, i.e.,

mechanotransduction [256]. In terms of mixing, the magnitude, direction, and pulsatile behavior

of flow near the endothelial layer may influence receptor-ligand bond formation [257] and enhance

the mixing of chemical morphogens. Advection-driven chemical gradients act as epigenetic signals

driving morphogenesis in ciliary-driven flows [258, 259], and it is possible that flow-driven gradients

near the endothelial surface layer also play a role in cardiogenesis and vasculogenesis.

The notion that flow is essential for proper vertebrate cardiogenesis is not a recent idea. It was

first investigated by Thoma in 1893 and Chapman in 1918 when chicken hearts were surgically

dissected during embryogenesis, and their resulting circulatory systems did not develop properly

[78, 77]. Moreover, the absence of erythrocytes at the initiation of the first heart beat and for a

period of time later, supports the belief that the early developing heart does not pump for nutrient

transport. These results suggest that the function of the embryonic heart is to aid in its own growth

as well as that of the circulatory system [79].

Later experiments show that obstructing flow in the venous inflow tract of developing hearts

in vivo results in problems in proper chamber and valve morphogenesis [43, 12, 90]. For example,
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Gruber et al. [43] found that irregular blood flow can lead to hypoplastic left heart syndrome

(HLHS), where the ventricle is too small or absent during the remainder of cardiogenesis. Hove et

al. [12] observed that when inflow and outflow tracts are obstructed in 37 hpf zebrafish, regular

waves of myocardial contractions continue to persist and neither valvulogenesis, cardiac looping, nor

chamber ballooning occur. Similarly, de-Vos et al. [90] performed a similar experiment in chicken

embryos at a similar stage of development, e.g., HH-stage 17 [62, 260], whereby the venous inflow

tract was obstructed temporarily. They noticed that all hemodynamic parameters decreased initially,

i.e., heart rate, peak systolic velocity, time-averaged velocity, peak and mean volumetric flow, and

stroke volume. Only the heart rate, time-averaged velocity, and mean volumetric flow recovered near

baseline levels.

Trabeculae are particularly sensitive to changes in intracardiac hemodynamics [52]. They fail

to form in the absence of blood flow [261, 262, 89], and moreover require an endocardium to form

[55, 263]. Trabeculae are bundles of muscle that protrude from the interior walls of the ventricles of the

heart. The sensitivity of the trabeulae under varying mechanical loads is important when considering

they may serve as important structures in which cellular mechanotransduction occurs. Trabeculation

may also help regulate and distribute shear stress over the ventricular endocardium, enhance

mixing, and modify chemical morphogen gradients. Furthermore, the presence of trabeculation may

contribute to a more uniform transmural stress distribution over the cardiac wall [57]. Even subtle

trabeculation defects spawning from slight modifications in hemodynamics may magnify over time.

As the mechanical force distribution changes due to the absence of normal trabeculae, Neuregulin

signalling, along with other genetic signals, are disrupted, leading to further deviations from healthy

cardiogenesis. For example, zebrafish embryos that are deficient in the key Neuregulin co-receptor

ErbB2 display severe cardiovascular defects including bradycardia, decreased fractional shortening,

and impaired cardiac conduction [5]. Disrupted shear distributions in the ventricle leads to immature

myocardial activation patterns, which perpetuate ventricular conduction and contractile deficiencies,

i.e., arrhythmia, abnormal fractional shortening, and possibly ventricular fibrillation [14].

The fluid dynamics of heart development, particularly at the stage when the trabeculae form, is

complex due to the balance of inertial and viscous forces. The Reynolds number, Re is a dimensionless

number that describes the ratio of inertial to viscous forces in the fluid and is given as Re = (ρUL)/µ.

In cardiac applications, µ is the viscosity of the blood, ρ is the density of the blood, U is the
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characteristic velocity (often chosen as the average or peak flow rate), and L is the characteristic

length (often chosen as the diameter of the chamber or vessel). Another dimensionless parameter

that is often used in describing cardiac flows is the Womersley number which is given by Wo = ωL2

ν ,

where ω is the angular frequency of contraction. Note that the Wo describes the transient inertial

force over the viscous force and is a measure of the importance of unsteadiness in the fluid. During

critical developmental stages such as cardiac looping and the formation of the trabeculae, Re ≈ 1

and Wo ≈ 1. In this regime, a number of fluid dynamic transitions can occur, such as the onset of

vortical flow and changes in flow direction, that depend upon the morphology, size of the chambers,

and effective viscosity of the blood. The flow is also unsteady, and the elastic walls of the heart

undergo large deformations.

Since analytical solutions are not readily available for complex geometries at intermediate Re,

recent work has used computational fluid dynamics to resolve the flow in the embryonic heart. For

example, DeGroff et al. [264] reconstructed the three-dimensional surface of human heart embryo

using a sequence of two-dimensional cross-sectional images at stages 10 and 11, when the heart a

mere valveless tube [265]. The cardiac wall was fixed, and steady and pulsatile flows were driven

through the chambers. They found streaming flows (particles released on one side of the lumen

did not cross over or mix with particles released from the opposite side) without coherent vortex

structures. Liu et al. [266] simulated flow through a three-dimensional model of a chick embryonic

heart during stage HH21 (after about 3.5 days of incubation) at a maximum Re of about 6.9. They

found that vortices formed during the ejection phase near the inner curvature of the outflow tract.

More recently, Lee et al. [28] performed 2D simulations of the developing zebrafish heart with moving

cardiac walls. They found unsteady vortices develop during atrial relaxation at 20-30 hpf and in both

the atrium and ventricle at 110-120 hpf. Goenezen et al. [267] used subject-specific computational

fluid dynamics (CFD) to model flow through a model of the chick embryonic heart outflow tract.

The numerical work described above, in addition to direct in vivo measurements of blood flow in

the embryonic heart [12, 268], further supports that the presence of vortices is sensitive to changes

in Re, morphology, and unsteadiness of the flow. Santhanakrishnan et al. [26] used a combination of

CFD and flow visualization in dynamically scaled physical models to describe the fluid dynamic

transitions that occur as the chambers balloon, the endocardial cushions grow, and the overall

scale of the heart increases. They found that the formation of intracardial vortices depended upon
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the height of the endocardial cushions, the depth of the chambers, and the Re. Their paper only

considers steady flows in an idealized two-dimensional chamber geometry with smooth, stationary

walls.

We will study the role of trabeculation on underlying fluid flows in zebrafish hearts using two

different models. The two model geometries can be seen in the Figure 5.1. One model will extend

the work on Santhanakrishnan et al. by considering a trabeculaed ventricular cavity and the other

will consider a two-chambered heart with a trabeculated ventricle.

Figure 5.1: Cartoon renditions of the geometries considered for motivation for the computational
models in Section 5.2 and Section 5.3. (a) is the trabeculated ventricular cavity model and (b) is the
two-chamber model with a trabeculated ventricle.

5.1.1 Goals of cavity model

With the geometry shown in Figure 5.1a, we expand upon the work of Santhanakrishnan et al.

by considering both pulsatile flows and the addition of trabeculae in a 2D idealized ventricle. We

use the immersed boundary method to solve the fluid structure interaction problem of flow through

a rigid ventricular cavity. Because the goal of this study is to map out the bifurcations in flow

structure that occur as a result of unsteadiness of the flow, trabeculae height, and Re, we restrict

the work to this idealized model of the ventricle. Even with these simplifications, we find a variety

of interesting bifurcations in flow structures that occur over a biologically relevant morphospace.

This data is also presented in [269].
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5.1.2 Goals of two-chamber model

Using imaging data from Liu et al. [5], we quantify the kinematics of the two-chambered zebrafish

heart at 96 hpf and use that data to construct both the geometry and prescribed pumping motion of

a two-chambered heart computational model, shown in Figure 5.1b. We use the immersed boundary

method to solve the fluid-structure interaction problem of flow through a two-chambered pumping

heart. The goal of this paper is to discern bifurcations in the intracardial and intertrabecular flow

structures due to scale (Wo), trabeculae height, and hematocrit. We find a variety of interesting

bifurcations in flow structures that occur over a biologically relevant morphospace. The implications

of the work are that alterations in bulk flow patterns, and particularly the presence or absence

of intracardial and intertrabecular vortices, will augment or reduce mixing in the heart, alter the

direction and magnitude of flow near the endothelial surface layer, and potentially change chemical

gradients of morphogens which serve as an epigenetic signal. This data is also presented in [270].

5.2 Trabeculated Cavity Model

Both the immersed boundary method and a physical model were used to study the fluid-structure

interaction problem of fluid flow moving through an idealized cavity with trabeculae. Trabeculae

heights were varied, and simulations were conducted for Reynolds numbers (Re) ranging from 0.01 to

100, while physical model experiments studied Re ∼ 1000. Using either steady or pulsatile parabolic

inflow conditions, both intracardial and intertrabecular vortices formed for biologically relevant

parameter values. The bifurcation from smooth streaming flow to vortical flow depends upon the

pulsation frequency, trabeculae geometry, and Re. Vorticity can be important in inducing shear

stress at the endothelial layer and mixing within the developing chambers, which is believed to aid

in chamber morphogenesis, valvulogenesis, and the formation of the trabeculae themselves.

5.2.1 Computational Model

Model Geometry A simplified two dimensional geometry of a 96 hpf zebrafish ventricle, which

contains trabeculae, was constructed using Figure 5.2a. The ventricle was idealized as a half ellipse,

with semi-major axis aV and semi-minor axis bV . It is tangentially laid within a channel, which

emulates a cavity-flow geometry. The channel models the atrioventricular canal (AV canal), with

width wAV , which is modeled as equal to the sinus venosus (SV) width, wSV . Six equally-spaced

trabeculae were aligned within the ventricle. The model geometry is illustrated in Figure 5.2c.
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(a) (b)

(c)

Figure 5.2: 5.2a is a snapshot of an embryonic zebrafish’s ventricle at 96 hpf right using spinning disk
confocal microscopy. The snapshot was taken right before its systolic phase. The protrusions into
the ventriclular chamber are trabeculation. Image from Tg(cmlc2:dsRed)s879; Tg(flk1:mcherry)s843
embryos expressing fluorescent proteins that label the myocardium and endocardium, respectively
[5]. Figure 5.2b illustrates the idea for our computational model geometry found in Figure 5.2c, that
is, blood flows from the atrio-ventricular canal into the ventricle and then proceeds into the bulbus
arteriosus. The computational model geometry is a flattened out rendition of 5.2b. The following
geometric parameters, aV and bV , the semi-major and semi-minor axis of the elliptical chamber, hT
and rT , the height and radii of the trabeculae, and wAV and wSV , the widths of the AV canal and
sinus venosus respectively.
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Parameter Value
aV 1.0
bV 0.8
wAV 0.8
wSV 0.8
rT 0.10
hT
bV

{0, 0.02, 0.04, . . . , 0.16}

Table 5.1: Table of non-dimensional geometric parameters used in the numerical model. The height
of trabeculae, hT , were varied for numerical experiments.

The trabeculae geometry was modeled using the following perturbed Gaussian-like function,

T (x) = hT

(
1−

(
x

rT

)2
)
e
−
(

x
0.7rT

)8

, (5.1)

where rT and hT are the radii and height of each trabecula, respectively. The full geometry can

be seen in Figure(5.2). This geometry is used for both the physical and numerical models of the

ventricle.

The geometric model parameters are found in Table(5.1), which were scaled from measurements

from Figure(5.2a). The parameters describing the ventricle were held constant and are given as

the chamber height, bV , chamber width, aV , and width of the AV canal and SV, wAV and wSV

respectively. Note that the radii of the trabeculae, rT , was also constant in all numerical simulations,

while the height of the trabeculae, hT , was varied.

Computational Model Implementation The immersed boundary method [162] was used to

solve for the flow velocities within the geometric model from Section 5.2.1. The immersed boundary

method has been successfully used to study the fluid dynamics of a variety of biological problems in

the intermediate Reynolds number range, defined here as 0.01 < Re < 1000 (see, for example, [238,

271, 272, 145]). The model consists of stiff boundaries that are immersed within an incompressible

fluid of dynamic viscosity, µ, and density, ρ.

The fiber models, e.g., force equations are specific to each IB model. In a simple case where a

preferred motion or position is enforced, boundary points are tethered to target points via linear

springs with zero resting-lengths. The equation describing the force applied to the fluid by the
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boundary in Lagrangian coordinates is given by f(r, t) and is explicitly written as,

f(r, t) = ktarget (Y(r, t)−X(r, t)) , (5.2)

where ktarget is the stiffness coefficient, and Y(r, t) is the prescribed Lagrangian position of the

target structure. In all simulations the immersed structure was held nearly rigid by applying a force

proportional to the distance between the location of the actual boundary and the preferred position.

The deviation between the actual and preferred positions can be controlled with the variable ktarget,

and chosen to be high as to allow only negligible deformations.

Figure 5.3: A cartoon depiction of the two parabolic inflow conditions within the model geometry.

The fluid flow is driven through the immersed boundary using either pulsatile parabolic inflows

or a linear ramp to steady parabolic inflow at the location of the AV canal, as shown in Figure 5.3.

The equations describing the specific inflow boundary conditions are given in Table(5.2). A partial

Neumann outflow condition is enforced in the direction of flow at the outlet. This outflow condition
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Case Inflow BC

Steady Inflow uin =

(
Vin
d2AV

tanh(2t)
(

1
4d2AV

− y2
)

0

)

Pulsatile Inflow uin =

(
Vin
d2AV
| sin(2πft)|

(
1

4d2AV
− y2

)
0

)

Table 5.2: Inflow boundary conditions for both simulations, one pertaining to parabolic steady inflow
and the other corresponding to a parabolic pulsatile inflow. The parameters used for the boundary
conditions are f , the non-dimensional frequency, which is matched to the zebrafish heart at 96 hpf ,
and Vin, the maximum inflow velocity.

is given as  ∂u
∂n̂

v

 =

 0

0

 . (5.3)

where u and v are the x− and y−components of the fluid velocity, respectively, and ∂u
∂n is the

directional derivative of the x−component of the velocity taken in the direction normal to the

boundary of the fluid domain.

To determine the Re within the ventricle of a 4 dpf wild type zebrafish, the characteristic velocity,

Vzf was taken as the average of the minimum and maximum velocity measured in vivo, and the

characteristic length, Lzf , was taken along a diagonal within the ventricle from Figure(5.2a). The

Re was then calculated as

Re =
ρzfLzfVzf

µzf
= 1.07, (5.4)

where Vzf = 0.75 cm/s [12], ρzf = 1025 kg/m3 [15], µzf = 0.0015 kg/(ms) [242], and Lzf = 208

µm. The characteristic frequency was chosen as f = 3.95 beats/s [57]. The dimensionless frequency

may then be calculated as

f̃ =
Lzf
Vzf

fzf = 0.11. (5.5)

For the mathematical model, the parameters values were chosen to keep the dimensionless

frequency fixed at 0.10 for the pulsatile simulations. The Re was varied by changing the kinematic

viscosity, ν = µ/ρ. For the simulations, the Resim is calculated using a characteristic length of wAV

and a characteristic velocity set to Vin (steady inflow) or 1
2Vin (pulsatile inflow). The simulations

were performed for Resim = 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 30, 40, 50, 100. The stiffness of the target

tethering points were chosen the minimize the deformations of the boundary, i.e, to keep it rigid,
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and was directly correlated to Re.

We used an adaptive and parallelized version of the immersed boundary method, IBAMR

[138, 128]. IBAMR is a C++ framework that provides discretization and solver infrastructure for

partial differential equations on block-structured locally refined Eulerian grids [273, 274] and on

Lagrangian (structural) meshes. IBAMR also includes infrastructure for coupling Eulerian and

Lagrangian representations.

The Eulerian grid on which the Navier-Stokes equations were solved was locally refined near the

immersed boundaries and regions of vorticity with a threshold of |ω| > 0.05. This Cartesian grid

was organized as a hierarchy of four nested grid levels, and the finest grid was assigned a spatial

step size of dx = D/1024, where D is the length of the domain. The ratio of the spatial step size on

each grid relative to the next coarsest grid was 1:4. The temporal resolution was varied to ensure

stability. Each Lagrangian point of the immersed structure was chosen to be D
2048 apart (twice the

resolution of the finest fluid grid).

Physical Models: Particle Image Velicometry Particle image velocimetry (PIV) was used to

validate the numerical investigation. Physical models, representing static, rigid simplified trabeculated

ventricles were designed in SketchUp Make 2013. These models were fabricated using a MakerBot

Replicator 2 3D printer in the UNC-CH Kenan Science Library. A lightweight polylactic acid

bioplastic material was used as the material, and a schematic image can be seen in Figure 5.4aa.
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(a)

(b)

Figure 5.4: (a) The PIV physical model geometry, which was 3D printed and placed into a flow
tank. (b) the PIV setup, which includes a flow tank, containing the 3D model, with a laser shining
orthogonally to the direction of flow, and camera oriented downwards vertically capturing the motion
of the neutrally buoyant glass beads.

The physical models are 202 mm long, each with a 60 mm and 24 mm ventricular chamber

diameter and depth, respectively. The trabeculae heights were varied from a biologically relevant

trabeculae height to chamber depth ratio to twice that ratio (0.08-0.16). Each model ventricle

chamber contains six trabeculae protruding radially inward. The model geometry is shown in Figure

5.4aa.

Flow velocity measurements were made using 2D planar instantaneous and time-averaged PIV.

The laser sheet for the PIV measurements was generated from a 50 mJ double-pulsed Nd:YAG

laser (Continuum, Santa Clara, CA, USA), which emitted light at a wavelength of 532 nm with a

maximum repetition rate of 15 Hz. The laser beam was converted into a planar sheet approximately

3 mm thick using a set of focusing optics. The laser sheet was located in the x-y plane upstream

of the working section. The time interval of separation between two image pairs was varied from

125-150 Î1
4s. A 14 bit CCD camera (Imager Intense, LaVision, Ypsilanti, MI, USA) with a 1376x1040

pixel array was used to capture images. The spatial resolution was approximately 0.05 mm pixel-1.

Uniform seeding was accomplished using 10 µm hollow glass spheres that were inserted in the flow
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tank and mixed to achieve a near-homogeneous distribution prior to each experiment. Volume

fractions were such that approximately 40-50 particles were visible within each 64x64 pixel window.

In typical experiments there was a maximum particle displacement of 0.8 mm (or 14 pixels) within

the correlation window, which corresponds to 25% displacement in a 64x64 pixel window.

The PIV set-up is shown in Figure 5.4b. The flow tank used was first constructed using

information from [135] and uses a propeller system to initiate steady flow currents. The long end

of the physical model was placed towards the side of incoming flow to minimize edge effects of the

model onto the fluid flow. The model was clamped down to minimize any oscillatory effects by

the flow and the measurements were taken in the middle of the geometrical model to reduce any

boundary or free surface effects.

5.2.2 Experimental Validation of the Numerical Model

In this section we compare simulation results from IBAMR to experimental data for a fluid moving

past a trabeculated cavity. The experimental data was obtained using particle image velocimetry

(PIV) [195, 275]. The simulations were run on a 1024x1024 grid.
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Figure 5.5: Comparison between PIV (left) and simulations (right) of the fluid velocity field (top)
and steamlines (bottom). The fluid dynamics qualitatively match in this high Re range.

Figure 5.5 shows a comparison of snapshots taken from IBAMR and the PIV physical model for

high Re, Re ∼ 1000. The basic flow structures are reproduced in all cases. Note that the physical

model of trabeculae in Figure 5.5 was 3D printed using the specifications from Figure 5.4a. The

trabeculae for the physical and computational models appear to have quite different geometries in

Figure 5.5; however, this is an artifact of the PIV setup.

5.2.3 Trabeculated Ventricular Cavity Results

In this section, we present the bulk flow structure over an idealized 2D model of a trabeculated

ventricle for the cases of both steady and unsteady flow. The Re is varied from 0.01 to 100, and

the trabecular heights are varied from zero to twice the biologically relevant case. Streamlines are

used to show the direction of flow. The streamline graphs were generated using VisIt visualization

software [192]. When interpreting streamlines, please note that a neutrally buoyant, small particle

in the fluid will follow the streamline. The streamlines are drawn by making a contour map of the

stream function, since the stream function is constant along the streamline. The stream function,
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ψ(x, t), in 2-D is defined by the following equations:

u(x, t) =
∂ψ(x, t)

∂y
(5.6)

v(x, t) = −∂ψ(x, t)

∂x
(5.7)

The streamline colors correspond to smooth, streaming flow (blue) and vortical flow (orange).

Steady Flow through Trabeculated Chambers Figure 5.6 shows the flow field streamlines

for the case of steady flow through an idealized trabeculated embryonic ventricle. The numerical

simulations span five orders of magnitude of Re, varying from 0.01 to 100, while trabeculae heights

were set to 0 ≤ hT
bV
≤ 0.16. Note that the biologically relevant case is hT

bV
= 0.08

In the case of no trabeculae (left column), we find vortex formation only occurs for Re ≥ 15,

in agreement with the findings of [26]. For Re ≤ 10, the flow bends around the cavity and no flow

separation occurs. As Re is increased to 20, flow reversal occurs and a closed vortex is present along

the left side of the cavity. The stagnation point is located between the orange and blue streamlines.

To the left of this stagnation point, the flow moves along the endocardium from the right to left.

To the right of the stagnation point, the flow moves right to left. As Re is further increased, the

stagnation point moves to the right, and the intracardial vortex becomes larger until it becomes as

large as the cavity itself for Re = O(100).

When half-size biologically relevant trabeculae are introduced into the model (hTbV = 0.04), similar

flow fields emerge for the case of Re ≤ 10. Although geometric perturbations now exist along the

cavity lining, no flow separation occurs, whether intracardially or intertrabecularly. For Re = 20 we

see a similar intracardial vortex to the case without trabeculae; however, it is also seen to weave along

regions with trabeculae. Furthermore there is an emergence of an independent closed vortex along

the right side between two trabeculae. For Re ≥ 50, we find the presence of one large intracardial

vortex wrapping around each trabeculae.

For biologically relevant trabeculae heights, there are closed intertrabecular vortices for Re

as low as 0.01, while no intracardial vortices are present at these lower Re. Interestingly, not all

intertrabecular regions have closed vortices. As Re is further increased from Re = 5 to Re = 10,

the intertrabecular vortices grow in size. As in previous cases, a larger intracardial vortex forms
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Figure 5.6: Streamline analysis performed for the case of steady flow into the trabeculated ventricle
of a zebrafish at 96 hpf for varying Re and trabeculae heights.
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at Re = 20. On the left hand side of the cavity, there is smooth flow from left to right around

the trabeculae. On the right side of the cavity, independent closed vortices form between the

trabeculae, and the flow is from right to left. For Re ≥ 50, a large intracardial vortex forms and no

intertrabecular vortices persist.

For trabeculae heights higher than the biologically relevant range, there exist intertrabecular

vortices for Re as low as Re = 0.01; however, compared to the previous biologically relevant case,

there are vortices between every adjacent pair of trabeculae. Moreover, because the trabeculae extend

further into the ventricular cavity, these vortices are larger than in previous cases. Intracardial

vortices do not develop until Re ≥ 20, where there is the presence of one large intracardial vortex on

the left side of the cavity. When Re = 20 and hT
bV

= 0.12, the intracardial vortex only wraps itself

around the first four trabeculae with flow moving from left to right. A single intertrabecular vortex

forms in the fourth trabecular valley. When Re = 20 and hT
bV

= 0.16, the intracardial vortex extends

over the left five trabeculae, with an intertrabecular vortex only in last valley between trabeculae

on the right side. For Re ≥ 50, there is the formation of a large intracardial vortex extending

throughout the cavity. However, both the trabeculae heights and Re are large enough that this

vortex does not wrap around each trabeculae, and intertrabecular vortices are able to form.

Pulsatile Flow through Trabeculated Chambers In the second set of simulations, the flow

was pulsed through the idealized chambers at a dimensionless frequency close to that reported for a

96 hpf embryonic zebrafish (f̃ = 1.0). The Re was set to 0.1, 1.0, 10 and 100. The dimensionless

trabecular heights, hTbV were varied from 0.0 to 0.16. Recall that the biologically relevant Re is about

one, and the biologically relevant dimensionless trabecular height is about 0.08. Snapshots of the

streamlines showing the flow patterns are given for each simulation for either 9 or 10 time points

during the pulse.

Figures 5.7 and 5.8 show streamline plots taken at 9 snapshots in time for lower Re cases,

Re = 0.1, 1.0, respectively. The streamlines are shown for 5%, 10%, 20%, 40%, 50%, 80%, 90%,

95%, and 100% of the pulse. Finer increments in time are given towards the beginning and end of

the pulse to illustrate the rapidly changing dynamics. The Re = 0.1, 1.0 cases show similar results.

For the majority of the pulse, the flow moves smoothly from left to right within the ventricle. In

between the trabeculae, vortices form during most of the pulse if the dimensionless trabecular height
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Figure 5.7: Streamline analysis performed for the case of pulsatile flow into the trabeculated ventricle
of a zebrafish at 96 hpf for Re = 0.1 and varying trabeculae heights.
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is at least 0.08. The development of these vortices causes the flow near the endothelial cells to move

from right to left between the trabeculae and from left to right on the top of the trabeculae. In

most cases, transient vortices form as the flow is decelerated at the end of the pulse. For Re = 1.0,

intertrabecular vortices form for small trabeculae, hTbV = 0.04, as the flow decelerates.

Figure 5.9 shows streamline plots for Re = 10 at ten evenly spaced times during a pulse.

Intertrabecular vortices form during the first half of the pulse if the dimensionless trabecular height

is at least 0.04. For all geometries, intracardial vortices form during the last half of the pulse. The

formation of the intracardial vortex annihilates the intertrabecular vortices, at least initially. The

intracardial vortices form on the upstream side of the chamber, and grow to fill the entire chamber

by the end of the pulse. The intertrabecular vortices form again towards the end of the pulse for
hT
bV

= 0.12, 0.16. Note that the presence of the intracardial vortex causes the intertrabecular vortices

to change direction so that they spin clockwise (and the intracardial vortices spin counterclockwise).

The results of the inertial dominated case, Re = 100, are shown in Figure 5.10. In all cases,

a large intracardial vortex that fills the entire chamber is observed at the end of the pulse and

beginning of the next pulse. As the flow accelerates, the intracardial vortex is pushed downstream,

and another intracardial vortex begins to form (t = 0.4T − 0.5T ). One or more oppositely spinning

vortices form between the trabeculae or between the two counterclockwise spinning intracardial

vortices when t = 0.5T . The upstream intracardial vortex combines with the original intracardial

vortex such that one large intracardial vortex is observed around t = 0.7T . When this occurs, the

oppositely spinning vortices are annihilated. For hT
bV
≥ 0.08, oppositely spinning intertrabecular

vortices reappear at the end of the pulse.

5.2.4 Trabeculated Cavity Conclusions

Two-dimensional immersed boundary simulations were used to solve for the flow fields within

an idealized model of a trabeculated ventricle of the zebrafish embryonic heart. Our results show

that a large intracardial vortex forms around Re ≈ 20 when steady flow is pushed through the

chamber. When the flow is pulsatile, the intracardial vortex begins to form around Re ≈ 10. In

general, pulsatile flow lowers the Re and trabeculae height needed to generate vortices. For both

steady and unsteady flows as the trabeculae grow into the chamber, another bifurcation occurs in

which small vortices form between each trabecula. Depending upon the Re and the morphology,

the intertrabecular vortices can form without the presence of a large intracardial vortex. In other
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Figure 5.8: Streamline analysis performed for the case of pulsatile flow into the trabeculated ventricle
of a zebrafish at 96 hpf for Re = 1.0 and varying trabeculae heights.
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Figure 5.9: Streamline analysis performed for the case of pulsatile flow into the trabeculated ventricle
of a zebrafish at 96 hpf for Re = 10.0 and varying trabeculae heights.
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Figure 5.10: Streamline analysis performed for the case of pulsatile flow into the trabeculated
ventricle of a zebrafish at 96 hpf for Re = 100 and varying trabeculae heights.

209



cases, typically at higher Re, both the intracardial and intertrabecular vortices form. The presence

of intracardial vortices changes the direction of the intertrabecular vortices.

This work focused specifically on the presence or absence of vortices given their significance to

both the magnitude and direction of flow as well as the mixing patterns within the ventricle. When

an intracardial vortex forms, the direction of the flow changes. When an intracardial vortex forms

in unsteady flow, the direction of flow can change during the beat cycle, and the stagnation point

moves along the cardiac wall. Since endothelial cells are known to sense and respond to changes

in both magnitude and direction of flow, the formation and motion of these vortices could be an

important epigenetic signal. The simulations revealed unexpected complexities in vortex dynamics

as bulk flow moves from left to right through the chamber. When an intracardial vortex forms in

absence of intertrabecular vortices, the flow at the endocardial wall moves from right to left. When

the intertrabecular vortices form in absence of an intracardial vortex, the flow again moves from

right to left. When both intertrabecular and intracardial vortices form, the flow moves from left to

right since the intertrabecular and intracardial vortices spin in opposite directions. We also observe

cases where not all intertrabecular spaces have a vortex. In such cases, the flow between different

trabeculae will move in different directions.

Importantly, this idealized study demonstrates that small changes in viscosity, scale, morphology,

and contraction dynamics can substantially influence bulk flow properties in the embryonic heart.

This presents an interesting challenge since each of these parameters is continuously changing during

growth. In addition, estimating the effective viscosity of the embryonic blood is nontrivial. Given

the sensitivity of the flow to such small perturbations, it is necessary to use well resolved numerical

grids that are experimentally validated.

Furthermore, it is evident that there is a strongly coupled relationship between intracardial

hemodynamics, genetic regulatory networks, and cardiac conduction. Besides contractions of the

myocardial cells, which in turn drive blood flow, hemodynamics are directly involved in proper

pacemaker and cardiac conduction tissue formation [94]. Moreover, shear stress is found to govern the

conduction velocity distribution of action potentials within the myocardium [14]. It is important to

note that changes in the conduction properties of the embryonic heart will also affect the intracardial

shear stresses, pressures and patterns of cyclic strains.

The cyclic stresses and strains of the cardiomyocytes can also help shape the overall architecture
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of the trabeculated ventricle. The dynamics of these strains depend upon the intracardial fluid

dynamics. For example, greater resistant to flow will induce larger cyclic stresses and possibly

reduced cyclic strains. It is known that cyclic strains initiate myogenesis in the cellular components

of primitive trabeculae. [91] Since trabeculation first occurs near peak stress sites in the ventricle,

altering blood flow may directly produce structural and morphological abnormalities in cardiogenesis.

Previous work focusing on hemodynamic unloading in an embryonic heart has resulted in disorganized

trabeculation and arrested growth of trabeculae [92, 55, 53]. On the other hand, embryos with a

hypertrabeculated ventricle also experience impaired cardiac function. [55]

The exact mechanisms of mechanotransduction are not yet clearly understood [245]. Mechanically

sensitive biochemical signals are thought to be propagated throughout a pipeline of epigenetic

signaling mechanisms, which may lead to regulation of gene expression, cellular differentiation,

proliferation, and migration [88]. In vitro studies have discovered that endothelial cells can detect

shear stresses as low as 1 dyn/cm2 [12] resulting in up or down regulation of gene expressions.

Embryonic zebrafish hearts beyond 36 hpf are known to undergo shear stresses on the order of

∼ 8 − 15 dyn/cm2, and such magnitudes of shear stress can cause cytoskeletal rearrangement

[12]. Mapping out the connection between fluid dynamics, the resulting forces, and the mechanical

regulation of developmental regulatory networks will be critical for a global understanding of the

process of heart development.

5.3 Two Chamber - Trabeculated Ventricle Model

We studied the fluid-structure interaction problem of fluid flow moving through a two-chambered

heart of a zebrafish (Danio rerio), with a trabeculated ventricle, at 96 hpf (hours post fertilization).

Trabeculae heights and hematocrit were varied, and simulations were conducted for two orders of

magnitude of Womersley number, extending beyond the biologically relevant range (0.2 – 12.0). Both

intracardial and intertrabecular vortices formed in the ventricle for biologically relevant parameter

values. The bifurcation from smooth streaming flow to vortical flow depends upon the trabeculae

geometry, hematocrit, and Wo. This work shows the importance of hematocrit and geometry in

determining the bulk flow patterns in the heart at this stage of development. Such changes in flow

can result in alterations of the shear stress and morphogen distribution along the endothelial lining

of the heart, which is believed to aid in chamber morphogenesis, valvulogenesis, and the formation

of the trabeculae themselves.
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5.3.1 Computational Model

Model Geometry A simplified two dimensional geometry of a 96 hpf zebrafish’s two-chambered

heart, containing trabeculae, was constructed using Figure 5.11a and 5.11b. The ventricle and

atria were idealized as an ellipse, with semi-major axis Va, and Aa, and semi-minor axis Vb and Ab,

respectively. The atrioventricular canal (AV canal) connects the atria and ventricle and is modeled as

endocardial cushions, which move to occlude or promote flow through the heart chambers. The sinus

venosus (SV) and bulbus arteriosus (BA) are modeled similarly. The width of the AV canal, SV,

and BA are given by wAV , wSV , and wBA, respectively. The above parameters are labeled systole

and diastole separately, e.g., the ventricular subscripts are given an exp label right before systole

and are labeled con before diastole, while the atrial labels are opposite.

(a) (b)

Figure 5.12: 5.12a and 5.12b are snapshots of an embryonic zebrafish’s ventricle at 96 hpf right
using spinning disk confocal microscopy. The snapshots were taken right before systole and diastole,
respectively. The protrusions into the ventriclular chamber are trabeculae and blood cells are
flouresing red [5].

Elliptical blood cells of uniform semi-major and semi-minor axis lengths, Ca and Cb, respectively.,

were included The volume fraction, or hematocrit, was varied between [0%, 25%]. Hemaocrit increases

linearly throughout development [239] from 0% to roughly 32% [276]. The desired volume fraction

of blood cells was calculated within the atria, and the blood cells were spaced evenly apart within it.

Moreover, as the ejection fraction is 60% [65], 60% of the number of blood cells in the atrium were

spaced evenly within the ventricle. in vivo images from [5] are shown in Figure 5.12. Note that this

placement of blood cells occurred immediately before diastole.
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(a) (b)

(c) (d)

(e)

Figure 5.11: 5.11a and 5.11b are snapshots of an embryonic zebrafish’s ventricle at 96 hpf right using
spinning disk confocal microscopy. The snapshots were taken right before its diastolic and systolic
phase, respectively. The protrusions into the ventriclular chamber are trabeculae. Dashed lines show
the minor and major axes. Images are from Tg(cmlc2:dsRed)s879; Tg(flk1:mcherry)s843 embryos
expressing fluorescent proteins that label the myocardium and endocardium, respectively [5]. 5.11c
and 5.11d illustrate the computational geometry right before diastole and systole, respectively. The
computational geometry, as shown in 5.11e, includes the two chambers, the atria (bottom chamber)
and ventricle (top chamber), the atrioventricular canal connecting the chambers, and the bulbus
arteriosus and sinus venosus, which all have endocardial cushions, which can occlude cardiac flow, as
well as flexible blood cells.
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Parameter Symbol Value
Contracted Ventricle Semi-Major Axis Vacon 0.80
Contracted Atria Semi-Major Axis Aacon 0.68
Contracted Ventricle Semi-Minor Axis Vbcon 0.64
Contracted Atria Semi-Minor Axis Abcon 0.76
Expanded Ventricle Semi-Major Axis Vaexp 1.00
Expanded Atria Semi-Major Axis Aaexp 0.88
Expanded Ventricle Semi-Minor Axis Vbexp 0.84
Expanded Atria Semi-Minor Axis Abexp 1.02
Contracted AV-Canal Width wAVcon 0.02
Contracted Bulbus Arteriosus Width wBAcon 0.015
Open AV-Canal Width wAVexp 0.34
Open Bulbus Arteriosus Width wBAexp 0.29
Sinus Venosus Width wSV 0.2
Blood Cell Semi-Major Axis Ca 0.050
Blood Cell Semi-Minor Axis Cb 0.025
Trabeculae Radii rT 0.06
Trabeculae Height hT {0, 0.09, 0.18, 0.27, 0.36}

Table 5.3: Table of dimensionless geometric parameters used in the numerical model. The non-
dimensionalization was done by dividing by Vaexp . The height of trabeculae, hT , were varied for
numerical experiments.

The trabeculae geometry was modeled using the following perturbed Gaussian-like function,

T (x) = hT

(
1−

(
x

rT

)2
)
e
−
(

x
0.7rT

)8

, (5.8)

where rT and hT are the radii and height of each trabecula, respectively. Trabeculae are placed

equidistant apart, as estimated from Figures 5.11a and 5.11b. The full geometry can be seen in

Figure(5.11).

The blood cells were approximated as ellipses, using Figure 5.12 to estimate their length to width

ratios, with respect to the size of the ventricle. The blood cells were held nearly rigid, as described

in Section 5.3.1.

The dimensionless geometric model parameters are found in Table(5.3), which were scaled from

measurements taken from Figures 5.11a and 5.11b. The radii, rT , and number of the trabeculae

were constant in all numerical simulations, while the height of the trabeculae, hT , was varied.

Model Geometry Implementation The immersed boundary method [162] was used to solve for

the flow velocities within the geometric model from Section 5.3.1. The immersed boundary method
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has been successfully used to study the fluid dynamics of a variety of biological problems in the

intermediate Reynolds number range, defined here as 0.01 < Re < 1000 (see, for example, [238, 271,

272, 145]). The model consists of stiff boundaries that are immersed within an incompressible fluid

of dynamic viscosity, µ, and density, ρ.

The fiber models, e.g., force equations, are specific to the application. In a simple case where a

preferred motion or position is enforced, boundary points are tethered to target points via linear

springs with resting-lengths of zero. The equation describing the force applied to the fluid by the

boundary in Lagrangian coordinates is given by f(r, t) and is explicitly written as,

ftrgt(r, t) = ktarget (Y(r, t)−X(r, t)) , (5.9)

where ktarget is the stiffness coefficient, and Y(r, t) is the preferred position Lagrangian position

of the target structure. In all simulations the motion of the two-chambered heart (atria, ventricle,

AV canal, SV, and BA) was prescribed by applying a force proportional to the distance between

location of the actual boundary and the preferred position. The deviation between the actual and

preferred positions can be controlled with the variable ktarget.

The blood cells’ deformations and movement was governed by fully coupled fluid-structure

interaction and movement was not prescribed. Linear springs were used to model the flexibility

of blood cells; however, the spring stiffnesses were large as only to allow negligible deformations.

Springs were attached between both adjacent Lagrangian points as well as the Lagrangian point

across from them. The forces applied to the fluid from deformations of the blood cells is given by

fspr(r, t) = kspring

(
1− RL
||XSL(r, t)−XM (r, t)||

)
·

 xSL − xM

ySL − yM

 , (5.10)

where XM and XSL are the master and slave node, respectively, kspring is the spring stiffness, and

RL is the resting length of the spring. Further details about these fibers models are described in

Section 3.3.2.
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(a)

(b)

Figure 5.13: 5.13a and 5.13b illustrate the maximum distance for the height and width (in pixels)
respectively, in the atria and ventricle of a 4 dpf embryonic zebrafish heart from [5].
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Ventricular Parameters Atrial Parameters Trabecular Parameters
Parameter Max. Length (µm) Parameter Max. Length (µm) Parameter Length(µm)
Ṽacon 89.20 Ãaexp 98.11 r̃T 7.29
Ṽbcon 70.84 Ãbexp 113.11 h̃T 20.97
Ṽaexp 93.78 Ãacon 76.59
Ṽbexp 111.98 Ãbcon 84.10

Table 5.4: The morphological parameters in physical units as computed from the kinematic analysis.

Ventricular Phases Atrial Phases
Phase %ofPeriod Time (s) Phase %ofPeriod Time (s)

Rest after Contraction 20.7 0.05 Rest after Expansion 20.7 0.05
Expansion 24.0 0.06 Contraction 24.0 0.06

Rest after Expansion 7.9 0.02 Rest after Contraction 2.2 0.01
Contraction 47.4 0.12 Expansion 53.1 0.13

Table 5.5: Average percentage and duration of each phase during the heart cycle obtained from
kinematic analysis.

5.3.2 Prescribed Motion of the Two-Chambered Heart

The motion of the two-chambered heart was modeled after a video taken using spinning disk

confocal microscopy from [5] of a wildtype zebrafish embryo at 96hpf. The video’s images were

acquired with a Nikon Te-2000u microscope (Nikon) at a rate of 250 frames per second using a

high-speed CMOS camera (MiCam Ultima, SciMedia) [5]. Using the MATLAB software package

DLTdv [277], the systolic and diastolic periods were determined by measuring maximum width

and height of both the atrial and ventricular chambers. These results are shown in Figure 5.13a

and 5.13b. The maximum width of the AV canal was also measured in pixels right before diastole,

and found to be 25 pixels. Assuming the width of the AV canal is 42µm [65], each single pixel

corresponds to 1.68µm. The converted height and widths in µm are found in Table 5.4. The average

heights and radii of the trabeculae were found to be 20.96µm and 7.29µm respectively.

One entire heart cycle was found to take place in approximately 27 frames. Assuming the heart

beat frequency is 3.95 beats/s [57], each pumping cycle lasts ∼ 0.25s. Each heart chamber undergoes

four phases during each cycle: a rest period at the end of contraction, a period of expansion, a rest

period at the end of expansion, and a period of contraction. The average percentage and duration of

each phase are given in Table 5.5.

The prescribed motion of the two-chamber hearts was performed by interpolating between

different phases of the heart cycle. This is illustrated in Figure 5.14 which show the beginning of
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Figure 5.14: We describe four phases of each heart cycle. Note that the position at the beginning
of each phase is shown. Phase 1: the ventricle rests after contraction and the atrium rests after
expansion. The AV canal goes from fully occluded to 10% occlusion. Phase 2: The diastolic phase
when the ventricle expands while the atria contracts. Phase 3: the ventricle rests after expansion
and the atrium rests after contraction. The AV canal becomes fully occluded state. Phase 4: The
systolic phase, when the ventricle contracts and the atria expands.

each phase. Phase 1: the ventricle rests after contraction and the atrium rests after expansion. The

AV canal goes from fully occluded to 10% occlusion. Phase 2: The diastolic phase when the ventricle

expands while the atria contracts. Phase 3: the ventricle rests after expansion and the atrium rests

after contraction. The AV canal becomes fully occluded state. Phase 4: The systolic phase, when the

ventricle contracts and the atria expands. Note we model the time in each phase after the ventricle

motion, only.

The actual motion of the heart is driven by changing the preferred position of the target points.

Each phase transition used the following interpolation function,

Xtarget = Xcurrent + gj(t) [Xnext −Xcurrent] ,

where

gj(t) =


c1

(
t
TPj

)2
t < t1

c3

(
t
TPj

)3
+ c4

(
t
TPj

)2
+ c5

(
t
TPj

)
+ c6 t1 ≤ t ≤ t2

−c2

(
t
TPj
− 1
)2

+ 1 t > t2

, (5.11)

and TPj is the total time for Phase j. Eq. (5.11) was chosen to enforce continuous accelerations
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Parameter Value
c1 2.739726027397260
c2 2.739726027397260
c3 -2.029426686960933
c4 3.044140030441400
c5 -0.015220700152207
c6 0.000253678335870

Table 5.6: Table of polynomial coefficients for the interpolating function, gj(t).

Phase 1 Phase 2
Parameter Time Parameter Time

TP 0.207× Period TP 0.240× Period
t1 0.05× TP1 t1 0.07× TP2

t2 0.95× TP1 t2 0.93× TP2

Phase 3 Phase 4
Parameter Time Parameter Time

TP 0.079× Period TP 0.474× Period
t1 0.05× TP3 t1 0.04× TP4

t2 0.95× TP3 t2 0.96× TP4

Table 5.7: Table of temporal parameters used in the interpolating function, gj(t).

between phases. The coefficients {ck}6k=1 are given in Table 5.6 and the durations of each phase are

reported in Table 5.7.

To determine the Wo within the heart, we take characteristic values for zebrafish embryonic

hearts between 4 and 4.5 dpf and match our dimensionless model parameters accordingly. The

characteristic frequency, fzf was measured in vivo, and the characteristic length, Lzf , was taken as

the height of the ventricular right before systole. The Wo was then calculated as

Wo = Lzf

√
2π · fzf · ρzf

µzf
= 0.77, (5.12)

where fzf = 3.95 s−1 [57], ρzf = 1025 kg/m3 [15], µzf = 0.0015 kg/(m · s) [242, 243], and

Lzf = 0.188 mm from DLTdv analysis.

The characteristic velocity, Vzf , was taken as the average of the minimum and maximum velocity

measured in vivo. The dimensionless frequency may then be calculated as

f̃ =
Lzf
Vzf
· fzf = 0.1, (5.13)
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where Vzf = 0.75 cm/s [12].

For the mathematical model, the parameters were chosen to keep the dimensionless frequency fixed

at f̃ = 1.0. The Wo was varied by changing the kinematic viscosity, ν = µ/ρ. The computational

parameters are reported in Table(5.7). For the simulations, the Wosim is calculated using a

characteristic length of Vbexp and characteristic velocity is set to the maximum velocity in the

AV canal during diastole. Since the pumping motion is prescribed, the maximum velocity in

the AV canal remains close to constant, regardless of Wo. The simulations were performed for

Wosim = {0.2, 0.5, 1.0, 2.0, 4.0, 8.0, 12.0}. The stiffnesses of the target points were chosen the

minimize the deviations from the preferred position and varied with Wosim and the same stiffness

was used in all simulations.

We used an adaptive and parallelized version of the immersed boundary method, IBAMR

[211, 128]. IBAMR is a C++ framework that provides discretization and solver infrastructure for

partial differential equations on block-structured locally refined Eulerian grids [273, 274] and on

Lagrangian (structural) meshes. IBAMR also includes infrastructure for coupling Eulerian and

Lagrangian representations.

The Eulerian grid on which the Navier-Stokes equations were solved was locally refined near the

immersed boundaries and regions of vorticity with a threshold of |ω| > 0.05. This Cartesian grid

was organized as a hierarchy of four nested grid levels, and the finest grid was assigned a spatial

step size of dx = D/1024, where D is the length of the domain. The ratio of the spatial step size on

each grid relative to the next coarsest grid was 1:4. The temporal resolution was varied to ensure

stability. Each Lagrangian point of the immersed structure was chosen to be D
2048 apart (twice the

resolution of the finest fluid grid).

5.3.3 Two-Chamber Heart Results

In this section, we describe the bulk flow structure within a two-chambered embryonic heart

containing both trabeculae and blood cells. The Wo is varied from 0.2 to 12, and the trabecular

heights are varied from half to twice the biologically relevant case. Note that we consider Wo beyond

the biologically relevant range for embryonic zebrafish to gain insight into why hearts may change

shape and pumping properties as they grow in developmental or evolutionary time. We consider

trabeculae heights outside of the biologically relevant range to gain insights into whether or not

physical factors constrain the developing heart to this region of the morphospace.
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Streamlines and vorticity plots are used to show the direction of flow and mixing within the

heart. We are interested in the direction of flow since endothelial cells are known to sense and

respond to not only the magnitude of flow but also to its direction [278, 279]. We are also interested

in the direction of flow near the cardiac wall since it may alter the advection of morphogens or other

signaling agents [280, 281, 282, 283]. The streamline and vorticity graphs were generated using VisIt

visualization software [192]. When interpreting streamlines, please note that a neutrally buoyant,

small particle in the fluid will follow the streamline. The streamlines are drawn by making a contour

map of the stream function, since the stream function is constant along the streamline. The stream

function, ψ(x, t), in 2D is defined by the following equations:

u(x, t) =
∂ψ(x, t)

∂y
(5.14)

v(x, t) = −∂ψ(x, t)

∂x
(5.15)

The vorticity, ω, is the curl of the velocity field and describes the local rotation of the fluid.

ω = ∇× u. (5.16)

221



Figure 5.15: Vorticity analysis performed for the case of biologically sized trabeculae and varying
Wo at different time points during one heart cycle.
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(a)

(b)

(c)

Figure 5.16
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Figure 5.15 shows the vorticity within the two-chambered heart at different times during one

period of the heart cycle, T . The trabeculae heights were fixed at the biological scale and no blood

cells were simulated. Five different Wo were considered, Wo = {0.5, 1.0, 4.0, 8.0, 12.0}. Note that

the biologically relevant case is Wo = 0.77, which falls between the Wo = 0.5 and Wo = 1.0 cases.

From the vorticity plots, it is clear there is not much difference in vortical flow between these cases,

either during disatole or systole. Furthermore, vortices do not form within the atria during atrial

filling. As Wo increases to Wo = 4.0, two distinct intracardial vortices form, and after systole, a

remnant vortex is still present in the ventricle. Two vortices form within the atria during filling.

The higher Wo > 4 cases, show similar vortex existence; however, the ventricular and atrial vortices

that form during diastole and systole, respectively, move within the chamber. Moreover, in the

Wo = 12.0 case, distinct vortices are observed between trabeculae, and some minor vortex shedding

appears as high speed flow moves over the trabeculae. It is clear as Wo increases, intracardial and

intertrabecular mixing also increases. The Wo of adult zebrafish and larger vertebrates is above 4

[15], and this suggest that the role of the trabeculae in the adult may be different than it is during

development. It is also interesting to note that adult hearts across the animal kingdom operating at

Wo < 4 typically lack trabeculae.

Figure 5.16 illustrates the total force magnitude (5.16a), the normal force magnitude on the

boundary(5.16b), and the tangential force magnitude on the boundary (5.16c) for various Wo

between 0.5 and 9.0 immediately after diastole. It appears the main contribution to the total force

magnitude comes from the normal component of the force in all cases. Furthermore it appears that

as Wo increases, the force felt on the left most trabeculae decreases, and there is an increase in the

forces felt by the top surface of each trabeculae as well as between the trabeculae, i.e., both normal

and tangential components of the force, see Figures 5.16b and 5.16c.

It is clear from Figure 5.17 that the region experiences the largest forces is on the left side of the

ventricle, e.g., the side opposite to the bulbus arteriosus, as diastole finishes. Next we examined

the the average magnitude of the force over a trabeculae over one heart cycle for Wo = 0.8, see

Figure 5.17b. During one heart beat, there appears to be three local extrema in the magnitude of

the force for trabeculae #3,#4,#5, two local maxima and one local minimum. To decipher what

forces were dominant, we computed the average magnitude of the normal and tangential components

of the force on the trabeculae, as illustrated in Figure 5.17c. The analysis shows that the normal

224



component of the force dominates for trabeculae #3,#4,#5. Moreover, two local maxima and one

local minimum are observed for the normal component of the force, averaged over the heartbeat.

One local maximum appears for the tangential component of the force for Wo = 0.8.

Furthermore, for trabeculae #3, a scaling study was performed for Wo ranging from 0.5 to 12.0.

Figure 5.17d depicts the average magnitude of the force over one heartbeat cycle for trabeculae

#3. The analysis yielded similar functional behavior, compared with the analogous case in Figure

5.17b, for Wo ≤ 3. For Wo > 3, there is a clear bifurcation where the average force magnitude no

longer displays three local extrema, but instead appears to monotonically increase to an asymptotic

maximum over one heartcycle.
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(a)

(b)

(c) (d)

Figure 5.17: (a) Illustrating the indexing of trabeculae (b) Plot illustrating the average magnitude
of the force on chosen trabeculae over the course of one heart cycle for Wo = 0.8, the biologically
relevant case. (c) Plot showing the average magnitude of the tangential and normal forces at each
time, for chosen trabeculae, during one heart cycle for Wo = 0.8. (d) A plot illustrating the average
magnitude of force at each time-step for Wo ranging from 0.5 (half the biologically relevant case) to
12.0.
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Figure 5.18: Streamline analysis for Wo = {0.5, 1.0, 4.0} and trabecular heights from half to twice
the biologically relevant size. The analysis was performed within the ventricle immediately after
diastole finishes and when the ventricle stops expanding.

Effects of Trabeculae Height Figure 5.18 shows closed streamlines for Wo = {0.5, 1.0, 4.0} and

trabecular heights ranging from half to twice the biologically relevant size. No blood cells were added

to the simulations, and the trabeculae radii and locations were fixed, keeping them equidistant along

the ventricular chamber. The analysis was performed within the ventricle immediately after diastole

finishes, e.g., the ventricle stops expanding.
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Figure 5.19: Magnitude of velocity colormaps, corresponding to simulations of varying Wo for
biologically relevant trabeculae height. The images were taken immediately after diastole, when the
ventricle stops expanding.

In the h0.5x case, i.e., half the biologically relevant height, some small vortices appear to form

between trabeculae, as seen by the closed streamlines. These closed loops are small relative to the

intertrabecular spacing. Note also that the flow velocities between the trabeculae are also quite

small, see Figure 5.19, which illustrates the magnitude of velocity for simulations of varying Wo for

biologically relevant trabeculae heights. Large intracardial vortices are clearly present in all cases,

and the size and strength of these vortices grow as Wo increases.

As the trabeculae height increases, the intertrabecular vortices grow larger. The intracardial

vortices remain approximately the same size as height increases. Note also that the intracardial

vortex pair becomes more asymmetric as the trabeculae increase in height. Moreover, in the h1.5x

and h2x cases, as Wo increases intertrabecular vortices become larger and increase in number (note

that these regions still represented relatively slow flow).

The intracardial vortices both spin in opposite directions, e.g., the vortex to the left rotates

counter-clockwise while the vortex on the right spins clockwise. Therefore, the intertrabecular

vortices on the left side of the ventricle, which form near the head of the trabeculae, spin clockwise,

and vice versa on the opposite side of the ventricle. Furthermore, there is a somewhat stagnant

region opposite to the AV canal, where the two vortices diverge, and hence no large intertrabecular
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vortices form, as compared to different intertrabecular regions in the same simulation. There are

small vortices that form in the intertrabecular region opposite to the AV canal in the h0.5x cases;

however, as the trabeculae increase in height in the Wo = 0.5 and Wo = 1.0 cases, this region

becomes scarce of vortical flow, while there remains a small amount in the Wo = 4.0 case.

Figure 5.20: The total magnitude of force (top row), magnitude of the normal force to the boundary
(middle row), and magnitude of the tangential force to the boundary (bottom) for different trabeculae
heights at the biologically relevant Wo, Wo = 0.8. It is clear that while the tangential and normal
force magnitudes differ, the main contributor to total force on the boundary is the normal component.
The largest force are felt by the trabeculae on the left most side of the ventricle. As the trabeculae
height increases, the most force is still felt on the same trabeculae, but with reduced magnitude.

For biologically relevant Wo = 0.8, in the case of h0.5x, the most force is felt by the trabeculae on

the left side of the ventricle, see Figure 5.20. This trend continues regardless of height; however, as

the height increases the magnitude of that force is decreased. Furthermore, as the height increases,

the trabeculae that are exposed to the most force are no longer the left most trabeculae, but the

trabeculae next to them. In all cases, the main contribution to the total force magnitude comes

from the normal component of the force, rather than the tangential component.
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Figure 5.21: Streamline analysis for Wo = {0.5, 1.0, 4.0} and hematocrit of V F = {5%, 15%, 25%}.
The analysis was performed within the ventricle immediately after diastole finishes and the ventricle
ceases its expansion.

Effects of Hematocrit Figure 5.21 shows the effect that the addition of blood cells has in flow

patterns over a range of Wo. In these simulations, trabeculae height, radii, and spacing were fixed.

Trabeculae heights were modeled at the biologically relevant size. The analysis was performed within

the ventricle immediately at the completion of diastole.

In the case of Wo = 0.5, it is clear the addition of blood cells alters the flow pattern within the

ventricle. When V F = 5%, the flow resembles that of the analogous case with no hematocrit as seen

in Figure 5.18; however, as hematocrit is increased to V F = 15%, the flow patterns are very different.

For V F = 5%, 15%, there are still coherent right or clockwise rotating vortices (shown as the closed

streamlines) that form on the right side of the ventricle. The right vortex stretches directly above

the AV canal and the left vortex is reduced. For V F = 25%, coherent intracardial vortices are not

evident. For larger Wo (Wo = 1, 4), the coherent intracardial vortex pair is observed even for higher

hematocrit.
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In general as Wo increases, the intracardial vortices become more well-defined, e.g., vortical flow

is smoother. However, in all cases hematocrit still affects vortical flow patterns intracardially as well

as intertrabeularly. Moreover, in these simulations it is clear that after diastole, no blood cells have

moved between trabeculae, but rather stay within the middle of the chamber, regardless of volume

fraction of Wo. These results suggest that for larger adult vertebrates, when the relative size of the

blood cells would also be smaller, the presence of blood cells does not dramatically change the bulk

flow. The blood cells do appear to affect the formation of coherent intracardial vortices at this stage

of development when Wo = 0.5− 1.

Figure 5.22: The total magnitude of force (top row), magnitude of the normal force to the boundary
(middle row), and magnitude of the tangential force to the boundary (bottom) for different volume
fractions at the biologically relevant Wo, Wo = 0.8. It is clear that while the tangential and normal
force magnitudes differ, the main contributor to total force on the boundary is the normal component.
Moreover, the blood cells do not appear to affect the magnitude of the force on the boundary in any
case.

Although the blood cells do affect intracardial vortices, they do not appear to have significant

affect on the magnitude of forces on the boundary for biologically relevant Wo = 0.8, see Figure 5.22.

It is clear that the main contribution to the total force comes from the normal force component to

the boundary, but the net differences between the cases for each volume fraction are minute. This

may be the case due to the blood cells having not been thrust close enough to the intertrabecular
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regions.

(a) (b)

Figure 5.23: 5.23a and 5.23b illustrate the average fluid vorticity on the left and right side of the
ventricle, respectively, immediately after diastole, as a function of Wo. It is clear there is a non-linear
relationship between the spatially-averaged vorticity and biological scale, given by Wo.

Fluid Mixing As a rough approximation of the rotation and mixing in the fluid, we calculated

that spatially-averaged vorticity in the ventricle. Figures 5.23a and 5.23b give the spatially-averaged

fluid vorticity on the left and right side of the ventricle, respectively, immediately after diastole, as a

function of Wo for V F = {0%, 5%, . . . , 25%}. It is evident that there is a non-linear relationship

between spatially-averaged vorticity and Wo. Furthermore, the overall net sign of the spatially-

averaged vorticity is positive in the left side of the ventricle, while it is opposite on the right side.

Moreover, the presence of blood cells does not appear to significantly affect the spatially-averaged

fluid vorticity for Wo ≤ 1, although it does affect the generation of a coherent vortex pair.

We report the spatially-averaged vorticity at different times during an entire heartbeat in

each side of the ventricle in Figure 5.24. The spatially averaged vorticity was calculated for

Wo = {0.5, 0.8, 1.5, 8.0} (note the biologically relevant case is Wo = 0.8) for hematocrit, V F =

{0%, 5%, 15%, 25%}. When Wo ≤ 1.5, there is a clear peak before diastole ends (the vertical dotted

line), while for Wo = 8.0, the peak occurs the moment when diastole ends. Note also that the width

of this peak is larger for Wo = 8.0 when inertia dominates.

In general as hematocrit increases, so does the spatially-averaged vorticity. Locally, the presence
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of blood cells act to increase vorticity in either direction through their tumbling motion, and this

enhancement is not captured in the spatial average.

(a) Wo = 0.5 (b) Wo = 0.8

(c) Wo = 1.5 (d) Wo = 8.0

Figure 5.24: Plots of the spatially-averaged magnitude of vorticity for Wo = {0.5, 0.8, 1.5, 8.0} for
V F = {0%, 5%, 15%, 25%}. The vertical dotted line indicates when diastole ends. For every case of
Wo, the higher the hematocrit, the more spatially-averaged vorticity magnitude is induced.

5.3.4 Two-Chamber Heart Conclusions

Two-dimensional immersed boundary simulations were used to solve for the fluid motion within

an idealized two-chambered pumping heart. The presence of blood cells, trabeculae, and the relative

importance of unsteady effects (e.g. the Wo) were considered. The geometry models an idealized

embryonic zebrafish heart at 4 dpf , and the motion of the chambers was approximated from the

kinematic analysis of video taken from a wild type embryonic zebrafish. The main results of the

study are as follows: 1) without the presence of blood cells, a large vortex pair forms in the ventricle

during filling; 2) with the presence of blood cells at lower Wo, a coherent vortex pair is not formed,

3) for Wo > 4, intertrabecular vortices form and vorticity separates from the trabeculae (suggesting
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the effect of the trabeculae is different in adult vertebrates than in embryos); 4) the presence of

blood cells enhances spatially averaged vorticity in the ventricle, which peaks during diastole; 5) the

presence of blood cells does not significantly alter the forces felt by the endocardial cells, and 6) the

majority of force is felt by the trabeculae on the outer region of the ventricle.

As mentioned above, an oppositely spinning large intracardial vortex pair forms for all Wo

considered, here for Wo > 0.2. The vortex on the left spins counterclockwise, while the vortex on the

right spins clockwise. This distinction becomes important when considering the formation of vortices

between trabeculae. Larger intertrabecular vortices form for simulations with taller trabeculae.

Furthermore, when the trabeculae height was 1.5x or 2x the biologically relevant height in the

Wo = 4 case, stacked vortices formed between trabeculae; the top vortex spinning opposite to that

of the closest intracardial vortex, while the vortex near the base spinning opposite to that. With the

addition of blood cells, coherent intracardial vortices do not form when Wo < 4 and V F ≤ 15%;

however, intertrabecular vortical flow patterns were not significantly changed as blood cells were not

advected into these regions.

Note that the presence or absence of vortices alter the magnitude and direction of flow near

the endocardial wall as well as the mixing patterns within the ventricle. When an intracardial

vortex forms, the direction of the flow changes. The presence of two large intracardial vortices forms

a stagnation point on the opposite side of the ventricle to the AV canal. Also, the presence of

intertrabecular vortices changes the direction of the flow between trabeculae; not all intertrabecular

regions have the formation of these vortices. In such cases, the direction of flow between different

trabeculae will move in different directions. Since endothelial cells are known to sense and respond

to changes in both magnitude and direction of flow [284, 279, 285], the formation and motion of

intracardial and intertrabecular vortices may be important epigenetic signals.

For the biologically relevant parameter choices, Wo between 0.5 and 1.0, it is clear that the

addition of blood cells significantly affects the formation of coherent vortices. This illustrates

the importance of considering hematocrit when conducting fluid dynamics studies at this stage of

development. Furthermore, this study demonstrates that small changes in viscosity, scale, morphology,

and hematocrit can influence bulk flow properties in the embryonic heart. This presents an interesting

challenge since each of these parameters are continuously changing during heart morphogenesis. In

addition, estimating the effective viscosity and hematocrit of the embryonic blood is nontrivial.
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The results of this paper demonstrate the importance of scale, morphology, and the presence of

blood cells in determining the bulk flow patterns through the developing heart. This is important be-

cause there is a strongly coupled relationship between intracardial hemodynamics, genetic regulatory

networks, and cardiac conduction [59, 12, 53, 75, 54, 15, 91, 52, 286, 88, 89]. Besides contractions of

the myocardial cells, which in turn drive blood flow, hemodynamics are directly involved in proper

pacemaker and cardiac conduction tissue formation. [94]. Moreover, shear stress is found to regulate

spatially dependent conduction velocities within the myocardium. [14]. Myocardial contractions are

also required for trabeculation [89]. It is important to note that changes in the conduction properties

of the embryonic heart will also affect the intracardial shear stresses and pressures and patterns of

cyclic strains.

The cyclic stresses and strains of the cardiomyocytes can also help shape the overall architecture

of the trabeculated ventricle. The dynamics of these strains depend upon the intracardial fluid

dynamics. For example, greater resistant to flow will induce larger cyclic stresses and possibly

reduced cyclic strains. It is known that cyclic strains initiate myogenesis in the cellular components

of primitive trabeculae. [91] Since trabeculation first occurs near peak stress sites in the ventricle,

altering blood flow may directly produce structural and morphological abnormalities in cardiogenesis.

Previous work focusing on hemodynamic unloading in an embryonic heart has resulted in disorganized

trabeculation and arrested growth of trabeculae [92, 55, 53]. On the other hand, embryos with a

hypertrabeculated ventricle also experience impaired cardiac function. [55]

The exact mechanisms of mechanotransduction are not yet clearly understood [245, 287]. Biochem-

ical signals are thought to be propagated throughout a pipeline of epigenetic signaling mechanisms,

which may lead to a regulation of gene expression, cellular differentiation, proliferation, and migra-

tion [88]. In vitro studies have discovered that endothelial cells can detect shear stresses as low as

0.2 dyn/cm2 [288] resulting in up or down regulation of gene expressions. Embryonic zebrafish hearts

around 36 hpf are believed to undergo shear forces of ∼ 2 dyn/cm2 and shearing of ∼ 75 dyn/cm2

by 4.5 dpf [12]. Shear forces in the ∼ 8 − 15 dyn/cm2 range are known to cause cytoskeletal

rearrangement [289, 288, 290]. Mapping out the connection between fluid dynamics, the resulting

forces, and the mechanical regulation of developmental regulatory networks will be critical for a

global understanding of the process of heart development.
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CHAPTER 6

Discussion and Conclusions

Personally, I liked the university. They gave us money and facilities,

we didn’t have to produce anything! You’ve never been out of college!

You don’t know what it’s like out there! I’ve WORKED in the private sector.

They expect *results*. - Dr. Raymond Stantz (Ghostbusters)

6.1 Quick Review of Thesis Topics

This thesis focused on the effects of morphology on flow during various stages of heart de-

velopment, namely the linear heart tube stage and during the onset of trabeculation. Various

mathematical models were developed and implemented within an immersed boundary framework

to study the fully-coupled fluid-structure interaction systems. Furthermore we developed an open

source immersed boundary software package, IB2d, with full implementations in both MATLAB

and Python, that is capable of running a vast range of biomechanics models and is accessible to

scientists who have experience in high-level programming environments. We will discuss some of the

conclusions below.

6.1.1 IB2d Discussion and Conclusion

IB2d is immersed boundary software with full implementations in both MATLAB and Python

3.5. It offers a vast array of fiber model options for constructing the immersed structure and has

functionality for advection-diffusion, artificial forcing, muscle mechanics, and electrophysiology.

Furthermore, having been written in high-level programming languages, it allows one to implement

new fiber models and functionality easily and at an accelerated rate.

High-level programming languages also come with a few drawbacks. Grid sizes should not be

implemented beyond a 512 × 512 resolution due to computational costs. If higher resolution is
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required, we suggest moving to IBAMR. Additionally unlike IBAMR, IB2d was strictly designed for

2D applications. While full 3D simulations are often desired, some applications may only require

fluids with two-dimensions [145, 198, 199, 200, 95]. IB2d was written in 2D to make it more readable

and to lend itself for easier modification, particularly as a first step in trying to implement a new

model.

As of October 2016, IB2d has had many users, see Figure B.3, and that number has continued

to grow at an accelerated rate since. Furthermore, functionality is constantly being added to the

already existing framework and we are open to suggestions for new functionality. It is our hope that

for teaching FSI applications, or fast implementations of new fiber models, numerical models and

approaches, or varying fluid solvers, IB2d will be seen as the ideal environment.

6.1.2 Linear Heart Tube Models Discussion and Conclusions

While studying the linear heart tube stage, three different models were presented. Those models

include one in which incorporates blood cells and compares bulk flow properties of prescribed dynamic

suction and peristaltic pumping, another which incorporates electrophysiology and traveling action

potentials to induce myocardial contraction along the flexible heart tube wall, and one final model

which investigates the effect of pumping near the resonant frequencies of the heart tube for dynamic

suction pumping. We will discuss the conclusions of each study below.

Heart tube with blood cells discussion and conclusion

Immersed boundary simulations were used to model dynamic suction pumping and peristalsis

for a single actuation frequency over a range of Womerseley numbers and hematocrits relevant to

valveless, tubular hearts. When strong net flow was generated in the tube at higher Wo, blood cells

clumped together, and did not flow uniformly throughout the tube. The spatially- and temporally-

averaged velocities across a cross-section along the top of the tube showed a non-linear relationship

between net flow rates and Wo for DSP. The effect of hematocrit on the net flow rate was significant

for Wo & 10 and was nonlinear. In particular, the varying levels of hematocrit changed the direction

of flow for DSP for Wo on the order of 10. The addition of blood cells did not enhance the weak
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net flows produced for Wo < 1. These results highlight the complex dynamics governing dynamic

suction pumping.

For DSP at low Wo and for the range of tube material properties considered here, the fluid is

nearly-reversible. This reversibility may explain in part why there is little net flow in the tube for

the case of DSP (a reversible motion) at V F = 0. This result is in agreement with [20, 21]. Previous

studies have shown enhanced fluid transport and animal locomotion in non-Newtonian fluids at

low Re and Wo [244]. Since the addition of blood cells in a Newtonian fluid makes the bulk fluid

effectively non-Newtonian, it is possible that the addition of blood cells could make the flow in

tubular hearts irreversible. For the parameters considered here, any such effect was negligible.

For the case of peristalsis, flow was consistently driven around the racetrack for all Wo and for

all hematocrits. Similar to DSP, the addition of hematocrit did not significantly change net flow

rates at low Wo. Unlike the case of DSP, the addition of hematocrit also did not significantly alter

the velocity waveform or the net flow at higher Wo.

Although the bulk transport of fluid was not significantly changed, the addition of blood cells

may affect the shear stresses experienced by the cardiac cells and the amount of mixing within the

heart tube. The peristalsis simulations show enhanced mixing as compared to that of DSP at the

same Wo and V F . Furthermore for Wo = 0.2, 2, peristalsis was able achieve similar levels of blood

cell mixing an order of magnitude faster than the DSP simulation at Wo = 20. These results are

important when considering the role that fluid mixing and shear stress may play in cardiogenesis.

Electro-mechanical model discussion and conclusion

This 2D model coupled the propagation of action potentials, given via the FitzHugh-Nagumo

equations, to the force generation and myocardial contraction, given through a non-linear spring-like

muscle model, to induce pumping behavior in a flexible tube, where the fully coupled fluid-structure

interaction model was solved using the immersed boundary method. This model was first described

in [22] and we explored the effect of perturbing a diffusive coefficient in the electrophysiology model

to capture different pumping regimes.

It was clear that by varying this diffusive term, D, the model was able to recreate a spectrum

of pumping mechanisms, ranging from one that in which the action potential remained localized
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and did not diffusive, i.e., a dynamic suction pumping-esque behavior, and one where the action

potential diffused along the heart tube in as a more traveling wave, e.g., peristaltic-like active wave

of contraction. Our model showed that when D was in the more peristaltic-like regime, i.e., D ∼ 100,

more bulk flow was produced in the racetrack geometry, as compared to more negligible amounts

from the dynamic suction pumping-esque regime, D ∼ 0.1. This result was consistent for the range

of Wo considered.

Moreover, in all cases considered, there was a non-linear relationship between average flow

rate, scale (Wo), and diffusivity (pumping behavior). More bulk flow was produced on average

(both spatially and temporally), with a maximum around Wo ∼ 0.8 than for higher Wo, up to

Wo = 30, in the peristalic-like regime. However, perturbing the material properties of the tube could

potentially affect bulk flow rates across all pumping regimes, given by D. Our focus was limited

to perturbing the stretching and bending stiffnesses of the tube specifically within the dynamic

suction pumping-esque regime, D ∼ [0.1, 1]. Furthermore, our study only considered increasing the

stiffnesses and not decreasing them. For the regime and material properties considered, we found a

non-linear relationship between flow rates and stiffness.

Resonant pumping model discussion and conclusion

The preliminary simulations performed here illustrate that exploring the resonance properties of

dynamic suction pumping leads to interesting behavior. We first found that over a large regime of

viscosities, that the resonance properties of a flexible tube, with material properties given in Table

4.6, show little dependence on viscosity for the first vibrational mode’s resonant frequency, while the

second mode’s resonant frequency depended slightly on viscosity. Using this information allows once

to directly compare simulations with the same resonance properties, while varying viscosity (and

hence Wo).

Next we showed that while pumping at the first and second mode resonant frequencies that the

resulting passive elastic waves from impedance pumping take on that mode’s associated vibrational

waveform. This remained consistent even in the case of adding mass to the boundaries. Furthermore

we saw a non-linear relationship between bulk flow and frequency. Moreover, we witnessed that

pumping near resonant frequencies seems to produce more bulk flow, although pumping at the
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second mode’s resonance frequency did not qualitatively produce more bulk than pumping at a

frequency near the first mode’s.

Lastly adding mass to the boundary had a significant effect on the resulting passive elastic

waveforms from dynamic suction pumping. We saw that the effect of mass looked to decrease the

amplitude of oscillation, and hence had an impact on bulk flow rates. For the simulations performed,

we qualitatively showed that adding mass to the boundary had a non-linear effect on bulk flow. The

added mass has an effect to lower the over-all damping of the system, which seems to significantly

contribute to bulk flow rates in dynamic suction pumping.

Although dynamic suction pumping is an easy to prescribe pumping mechanism, the relationships

between all parameters of the system (frequency, material properties, viscosity, e.g., scale) and bulk

flow rates are very complex in nature. More work can be done in trying to understand the details of

these very intricate, non-linear relationships.

6.1.3 Trabeculation Models Discussion and Conclusions

Upon investigating the effects of trabeculae, i.e., complex morphologies along the ventricular

endocardium, on intracardial flows, two models were presented. Those models include a stead and

pulsatile trabeculated cavity flow model and a two-chamber pumping model with a trabeculated

ventricle that includes blood cells. The main results of those models will be discussed below.

Trabeculated cavity model discussion and conclusion

Immersed boundary simulations were used to solve for the flow fields within an idealized model of

a trabeculated ventricle of the zebrafish embryonic heart. Our results show that a large intracardial

vortex forms around Re ≈ 20 when steady flow is pushed through the chamber. When the flow is

pulsatile, the intracardial vortex begins to form around Re ≈ 10. In general, pulsatile flow lowers the

Re and trabeculae height needed to generate vortices. For both steady and unsteady flows as the

trabeculae grow into the chamber, another bifurcation occurs in which small vortices form between

each trabecula. Depending upon the Re and the morphology, the intertrabecular vortices can form
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without the presence of a large intracardial vortex. In other cases, typically at higher Re, both the

intracardial and intertrabecular vortices form. The presence of intracardial vortices changes the

direction of the intertrabecular vortices.

Two-chamber model discussion and conclusion

Immersed boundary simulations were used to solve for the fluid motion within an idealized

two-chambered pumping heart. The presence of blood cells, trabeculae, and the relative importance

of unsteady effects (e.g. the Wo) were considered. The geometry models an idealized embryonic

zebrafish heart at 4 dpf , and the motion of the chambers was approximated from the kinematic

analysis of video taken from a wild type embryonic zebrafish. The main results of the study are

as follows: 1) without the presence of blood cells, a large vortex pair forms in the ventricle during

filling; 2) with the presence of blood cells at lower Wo, a coherent vortex pair is not formed, 3)

for Wo > 4, intertrabecular vortices form and vorticity separates from the trabeculae (suggesting

the effect of the trabeculae is different in adult vertebrates than in embryos); 4) the presence of

blood cells enhances spatially averaged vorticity in the ventricle, which peaks during diastole; 5) the

presence of blood cells does not significantly alter the forces felt by the endocardial cells, and 6) the

majority of force is felt by the trabeculae on the outer region of the ventricle.

As mentioned above, an oppositely spinning large intracardial vortex pair forms for all Wo

considered, here for Wo > 0.2. The vortex on the left spins counterclockwise, while the vortex on the

right spins clockwise. This distinction becomes important when considering the formation of vortices

between trabeculae. Larger intertrabecular vortices form for simulations with taller trabeculae.

Furthermore, when the trabeculae height was 1.5x or 2x the biologically relevant height in the

Wo = 4 case, stacked vortices formed between trabeculae; the top vortex spinning opposite to that

of the closest intracardial vortex, while the vortex near the base spinning opposite to that. With the

addition of blood cells, coherent intracardial vortices do not form when Wo < 4 and V F ≤ 15%;

however, intertrabecular vortical flow patterns were not significantly changed as blood cells were not

advected into these regions.
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6.1.4 Future Work

To fully understand the intracardial fluid dynamics during heart development, many more studies

must be performed. Although, this thesis focused primarily on the linear heart tube stage and

the stage during the onset of ventricular trabeculation, many other stages of heart development

deserve adequate attention, such as the fluid dynamics of cardiac looping and chamber ballooning,

transformation of the endocardial cushions to valve leaflets, ventricular and atrial septation, division

of the aortic and pulmonary trunks, as well as further maturation of chamber trabeculation. Moreover,

moving from 2D to 3D simulations are necessary to fully model the intracardial flows and more

accurately study the stress distribution along the endocardium of embryonic hearts during heart

morphogenesis. Furthermore, more in-depth models that couple hemodynamic forces to cellular

signaling mechanisms, e.g., mechantransductive models, are required to further understand the role

of fluid dynamics in cardiogenesis.
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APPENDIX A

IMMERSED BOUNDARY DISCRETIZATION APPENDICES

The discretizations used in IB2d for solving The Navier-Stokes equations, e.g., (3.72) and (3.73),

for computing normal derivatives for porous elements, and for advection-diffusion will be described

in this appendix below.

A.1 Discretizing the Navier-Stokes Equations

IB2d uses finite difference approximations to discretize the Navier-Stokes equations on a fixed

lattice, e.g., the Eulerian (fluid) grid. It follows the discretization described in [291, 162], and are

implicitly defined as follows

ρ

(
uk+1 − uk

∆t
+ S∆x

(
uk
)
uk
)
−D0pk+1 = µ

2∑
α=1

D+
αD
−
αu

k+1 + Fk (A.1)

D0 · uk+1 = 0, (A.2)

where ∆t and ∆x are the time-step and Eulerian meshwidth, respectively, and ρ and µ are the

density of the and dynamic viscosity of the fluid, respectively. D0 is the central differencing operator,

defined as

D0 =
(
D0

1, D
0
2

)
, (A.3)

with

(
D0
αφ
)

(x) =
φ
(
x + ∆xeα

)
− φ

(
x−∆xeα

)
2∆x

, (A.4)

where (e1, e2) is the standard basis in R2. The viscous term, given by
∑2

α=1D
+
αD
−
αuk+1, is a

difference approximation to the Laplacian, where the D±α operators are the forward and backward

approximations to ∂
∂xα

. They are defined as
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(
D+
αφ
)

(x) =
φ
(
x + ∆xeα

)
− φ

(
x
)

∆x
(A.5)

(
D−αφ

)
(x) =

φ
(
x
)
− φ

(
x−∆xeα

)
∆x

. (A.6)

The skew-symmetric difference operator, S∆x, serves as an approximation to the non-linear

advection term, u · ∇u, and is defined as follows

S∆x =
1

2

[
u ·D0

∆xφ+ D0
∆xφ · (uφ)

]
. (A.7)

Using the discretizations (A.4), (A.5), (A.6), and (A.7), the equations (A.1) and (A.2) are linear in

uk+1 and pk+1. To solve for uk+1 and pk+1 from uk, pk+1, and F k, the Fast Fourier Transform (FFT)

was implemented [168, 169]. Note that this assumes a periodic domain. Future implementations will

include non-square domains and projection methods to incorporate Dirichlet or Neumann Boundary

conditions [165, 166].

The Navier-Stokes equations need not be discretized in this manner, and this is where one

could implement a fluid solver and discretization of their choice, e.g., finite element or Lattice

Boltzmann [148]. However, further consideration must be taken into account on how to spread the

Lagrangian forces to the Eulerian grid and move the Lagrangian structure at the local fluid velocity,

i.e., Eqns.(3.74) and (3.75), respectively, if implementing in IB2d.

If one is interested in solely solving the Navier-Stokes equations there are many methods for

doing so, such as projection methods [165, 166], finite volume methods [292], finite element methods

[293], Lattice Boltzmann methods [294, 295], panel methods [296], etc. Each method is used for

a particular reason, whether it is implementing boundary conditions, accuracy and resolution of

specific dynamics, or computational speed. Open source code is available for testing out various

methods at [297].

A.2 Discretizing the Fourth Derivatives of the Non-Invariant Beam Model
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Recall that the non-invariant beam deformation forces were given by

Fbeam = kNIB
∂4

∂s4
(X(s, t)−Xb(s)) , (A.8)

First we define

X(s, t) = (Xq, Yq),

X(s+ 1, t) = (Xr, Yr), (A.9)

X(s− 1, t) = (Xp, Yq).

Recall that by Newton’s second law that a force is agiven by an acceleration, hence we only have

to discretize (A.8) as a second derivative. Hence we find that the forces are computed as

Fbeam(s− 1, 1) = −

(
kNIBXr − 2Xq +Xp − Cx

kNIBYr − 2Yq + Yp − Cy

)
,

Fbeam(s, 1) = 2

(
kNIBXr − 2Xq +Xp − Cx

kNIBYr − 2Yq + Yp − Cy

)
, (A.10)

Fbeam(s+ 1, 1) = −

(
kNIBXr − 2Xq +Xp − Cx

kNIBYr − 2Yq + Yp − Cy

)
,

where Cx and Cy are the preferred curvatures, given by

C =

(
Cx

Cy

)
=

(
XrB − 2XqB +XpB

YrB − 2YqB + YpB

)
, (A.11)

where the B in the subscript denotes the base configuration, or preferred configuration.

A.3 Discretizing the Normal Derivatives on the Boundary

The normal vector to the Lagrangian structure is given by [175, 173],

n = τ × e3, (A.12)
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where

τ =
∂X
∂s∣∣∂X
∂s

∣∣ (A.13)

Hence we have that

n =

(
∂Y/∂s

|∂X/∂s|
,− ∂X/∂s

|∂X/∂s|

)
. (A.14)

Unlike [175], who used a 3-pt central differencing operator to compute ∂X
∂x , we compute the partial

derivatives using a 5-pt differentiation stencil. We do this to both minimize error near end-points of

a porous structure and allow functionality for non-closed porous structures. Hence we implement

the following five different differentiation operators,

(D5,−2
α φ)(s) =

−25
12φ

(
s− 2∆seα

)
+ 4φ

(
s−∆seα

)
− 3φ

(
s
)

+ 4
3φ
(
s+ ∆seα

)
− 1

4φ
(
s+ 2∆seα

)
∆s

(D5,−1
α φ)(s) =

−1
4φ
(
s− 2∆seα

)
− 5

6φ
(
s−∆seα

)
+ 3

2φ
(
s
)
− 1

2φ
(
s+ ∆seα

)
+ 1

12φ
(
s+ 2∆seα

)
∆s

(D5,0
α φ)(s) =

1
12φ

(
s− 2∆seα

)
− 2

3φ
(
s−∆seα

)
+ 2

3φ
(
s+ ∆seα

)
− 1

12φ
(
s+ 2∆seα

)
∆s

(D5,1
α φ)(s) =

− 1
12φ

(
s− 2∆seα

)
+ 1

2φ
(
s−∆seα

)
− 3

2φ
(
s
)

+ 5
6φ
(
s+ ∆seα

)
+ 1

4φ
(
s+ 2∆seα

)
∆s

(D5,2
α φ)(s) =

1
4φ
(
s− 2∆seα

)
− 4

3φ
(
s−∆seα

)
+ 3φ

(
s
)
− 4φ

(
s+ ∆seα

)
+ 25

12φ
(
s+ 2∆seα

)
∆s

A.4 Discretizing the FitzHugh-Nagumo Equations

The spatial grid was discretized on a more coarse mesh than that of the Eulerian grid, call it ∆xf .

However, it is scaled to match the geometry of the heart-tube to obtain the desired dynamics of the

active wave of contraction Moreover, the time-step for the FitzHugh-Nagumo equations, ∆tf , was

scaled from the IB time-step, ∆t, i.e.,

∆tf = ∆t
F
T
, (A.15)

where F and T are a non-dimensional scaling parameter and the desired pumping period,

respectively.

The equations themselves are discretized using standard finite difference stencils, with Euler
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time-stepping, e.g.,

vn+1
j = vnj + ∆tf

[
D
vnj+1 − 2vnj + vnj−1

∆x2
f

−vnj (va − vnj )(vnj − 1) + Inj − wnj

]
(A.16)

wn+1
j = wnj + ∆tf ε(v

n
j − γwnj ). (A.17)

A.5 Discretizing the Advection-Diffusion Equation

The concentration is discretized on the same resolution as the Eulerian grid. Each nodal point has a

scalar concentration value. One possible choice of discretization for the advection-diffusion equations

(3.111) could be as follows,

ck+1 = ck + ∆t

(
D D2,0ck − uk · D̃±0 ck

)
, (A.18)

where D is the diffusion coefficient, D2,0 is the central differencing operator for second derivatives,

and D̃
±
0 is the upwind differencing operator which depends on the sign of c at that particular point

in time. However, we expect better accuracy if we time split the spatial dimensions. Before we

discuss time splitting, we will explicitly define each of the operators in (A.18). D2,0, is defined as

follows,

D2,0 =
(
D2,0

1 , D2,0
2

)
(A.19)

with (
D2,0
α φ

)
(x) =

φ
(
x + ∆xeα

)
− 2φ

(
x
)

+ φ
(
x−∆xeα

)
∆x2

. (A.20)

The upwind operator is defined as

D̃
±
0 =

(
D̃±1 , D̃

±
2

)
(A.21)
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with

(
D̃±αφ

)
(x) =


φ
(
x+∆xeα

)
−φ
(
x
)

∆x , φ(x) ≤ 0

φ
(
x
)
−φ
(
x−∆xeα

)
∆x , φ(x) > 0.

(A.22)

We will use the same operators as just described, but not discuss time-splitting for advection.

To do this we break the time-step into two parts - the first of which we solve for an auxillary

concentration, c∗ from ck, and then update c∗ to find ck+1.

First we will advect in x,

c∗ = ck + ∆t
(
DD2,0

1 ck − ukD̃±1 c
k
)
, (A.23)

where uk = (uk, vk). Next we advect in y to give the next iteration for ck+1 from c∗,

ck+1 = c∗ + ∆t
(
DD2,0

2 c∗ − vkD̃±2 c
∗
)
, (A.24)

Splitting recovers some properties of the exact advection by allowing flux from diagonal cells.

Computing multi-dimensional flow by time-splitting usually proves a more accurate alternative than

multi-dimensional discretization of 3.111.

We show an example of advection-diffusion coupled to a changed velocity field in Section 3.3.4,

as well as, an example of advection-diffusion for an arbitrary background velocity field in Appendix

A.5.1.

A.5.1 Advection-Diffusion Example

Here we present an example of the advection-diffusion of a background concentration due to a

steady background velocity field. Consider a background velocity defined as,

u(x) =

 −y−0.5
5

x−0.5
5

 , (A.25)

which is illustrated as the velocity field in Figure A.1 below.
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Figure A.1: Steady circular velocity field.

We solved 3.111 on a [0, 1] × [0, 1] computational domain equally partioned into a 256 × 256

grid. Snapshots that illustrate the advection and diffusion of a background concentration in Figure

A.2 for various diffusion coefficients, D. It is clear as D is decreased, the initial concentration blob

stays better intact for longer throughout the simulation. The circular velocity field pushes the blob

around in a circular motion.
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Figure A.2: Illustrated is an initial concentration advecting and diffusing in a circle around the
computational domain for various diffusive coefficients, D.

Note that the solutions in Figure A.2 all experience numerical dissipation, as upwind schemes

are only 1st-order accurate in both time and space. A blind implementation of a higher order explcit

scheme, e.g., the Lax-Wendroff method, may prescribe the sharp interfaces better, as the scheme

will be second-order in both time and space; however, other artifacts will arise, namely the presence

of high frequency oscillations behind the wave front [194].
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Figure A.3: Illustrated is an initial concentration advecting and diffusing in a circle around the
computational domain D = 1e− 6 using the split upwind and split Lax-Wendroff method.

We illustrate this phenemena in Figure A.3, where we compare the solutions for the upwind

scheme described in Appendix A.5 and the Lax-Wendroff Method with diffusive coefficient D = 1e−6,

which will be described below. It is clear that there is more numerical dissipation using the split

upwind scheme and that the Lax-Wendroff method better preserves the sharp concentration gradients;

however, it is apparent that Lax-Wendroff gives high frequency oscillations behind the wave front.

For this reason, we chose the code to has more numerical dissipation artifacts than produce more

high frequency oscillations at this time. Future work will include a flux limiting approach to remedy

this [194].

Lax-Wendroff uses a central differencing operator to compute the advective terms and an artificial

diffusive term to counter instabilities in the advection term. For a simple 1D advection linear

equation, i.e.,

ut + aux = 0, (A.26)

where a is the speed of the wave-front, Lax-Wendroff gives the discretization as follows,

uk+1
j = ukj − a

(
∆t

∆x

)
(ukj+1 − ukj−1)

2
+ a2

(
∆t

∆x

)2 ukj+1 − 2ukj + ukj−1

2
. (A.27)

Using an operator splitting method, we extend (A.27) to 2D analogously,
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First we will advect in x,

c∗i,j = cki,j + ∆t

(
D
cki+1,j − 2cki,j + cki−1,j

∆x2
− uki,j

(
1

∆x

)
cki+1,j − cki−1,j

2
+ . . .

. . .+
(
cki,j

)2
(

∆t

∆x2

)
cki+1,j − 2cki,j + cki−1,j

2

)
, (A.28)

where uk = (uk, vk). Next we advect in y to give the next iteration for ck+1 from c∗,

ck+1
i,j = c∗i,j + ∆t

(
D
c∗i,j+1 − 2c∗i,j + c∗i,j−1

∆x2
− vki,j

(
1

∆x

)
c∗i,j+1 − c∗i,j−1

2
+ . . .

. . .+
(
c∗i,j
)2( ∆t

∆x2

)
c∗i,j+1 − 2c∗i,j + c∗i,j−1

2

)
. (A.29)
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APPENDIX B

IB2d EXTRAS

Since IB2d was first released on github.com/nickabattista/IB2d/, it has been downloaded and

used by many people across the United States and the world. An example of weekly statistics about

its use are displayed in Figure B.3. We note that these statistics show 50 unique visitors and almost

500 page views on the GitHub page between October 19th, 2016 and November 1st, 2016.

Figure B.1: Example of statistics pertaining to visitors to the GitHub site for IB2d from October 19,
2016 to November 1, 2016. We note this was before the release of the IB2d paper [37].

Furthermore, for solely entertainment purposes, using GitHub’s user-statistics, I can prove that

I did, indeed, sleep during my dissertation work. These statistics are shown in Figure B.2. It is

my hope this adds a little excitement to this dissertation, similarly like comical papers, such as
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[298, 299, 300], or brilliant technical papers, such as [301, 302, 303, 304, 305], have given me during

my graduate school tenure.

Figure B.2: Punch card from GitHub user-statistics illustrating when I did commits to my GitHub
repositories [38]. It is clear that between the hours of 3am and 8am, I tended to sleep, as no code
was committed during that time. Moreover, I seemed to reserve Saturday nights for playing music
with friends, or at least not committing code.

Lastly, we present a collage of IB2d simulation images as shown in Section 3.3. All of the

simulations illustrated are but a fraction of the built in examples, all of which are ready to be run

immediately upon once having downloaded the software.
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Figure B.3: A collage of a fraction of the simulations that can be run upon immediate download of
the open source IB2d software.
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APPENDIX C

NUMERICAL METHODS FOR COMPUTATIONAL FLUID DYNAMICS

(CFD)

In this appendix we will discuss various numerical algorithms for studying fluid dynamics, namely

Chorin’s projection method [165, 306, 166], a spectral methods solver based on the Fast Fourier

Transform (FFT) [307, 308, 309], and the lattice Boltzmann method [294, 295]. Codes are available

to test these methods at [297]. Their corresponding simulation data is saved in the .vtk format, as

to allow for visualization using open source programs, such as VisIt [192] or ParaView [191].

C.1 Projection Methods

The projection was first introduced by Chorin in 1967 to solve the incompressible, Navier-Stokes

equations [165]. The key feature of this method is that it uses operator splitting and Helmholtz-Hodge

decomposition to decouple the velocity and the pressure fields, making it possible to explicitly solve

the incompressible, Navier-Stokes equations in three steps.

In the first step, an auxillary (intermediate) velocity field is computed by ignoring any de-

pendencies on the pressure. This is essentially an operator split. This velocity field found will

not be divergence-free, and hence the necessary incompressible condition will not be satisfied. In

discretization terms, this step takes the form of

u∗ − un

∆t
= − (un · ∇)un + µ∆un, (C.1)

where u∗ is the intermediate velocity field, which is not divergence-free. The second step is

known as the projection step, where the pressure gets reintroduced to give a final velocity field, un+1

that satisfied the incompressibility condition. This discretized step takes the following form,

un+1 − u∗

∆t
= −1

ρ
∇pn+1, (C.2)

where pn+1 is the pressure field at the next time-step. Because it requires an updated pressure

term, we must first find such a pressure. To do this we recall Helmholtz-Hodge Decomposition

[310, 311], which says any vector field, that is twice continuously differentiable on a bounded domain,

say v, can be decomposed into a solenoidal part (divergence-free) and an irrotational part (curl-free),
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i.e.,

v = vsol + virr = vsol +∇φ, (C.3)

where vsol is the solenoidal part and virr is the irrotational part. We note that an irrotational

vector field can be written as the gradient of a scalar, e.g., virr = ∇φ, where φ is some scalar

function.

Note that if we take the divergence of (C.3), we obtain,

∇ · v = ∆φ. (C.4)

It is then possible to find the divergence-free part of the vector field v by solving the above

Poisson problem in (C.4). This motivates the form of the second step for a projection method given

in (C.2). However, to find the pressure, we take a divergence of (C.2) and note that we require that

un+1 be divergence-free, i.e.,

∇ · un+1 = 0. (C.5)

Taking the divergence of (C.2) and requiring the condition in (C.5), we obtain the following

Poisson problem for the pressure, pn+1, in terms of the intermediate velocity field u∗,

∆t

ρ
∆pn+1 = ∇ · u∗ (C.6)

Note that this equation can be solved explicitly. Hence once pn+1 is found, we can then solve for

un+1 using (C.2).

C.1.1 Projection Methods Example

We illustrate one example using the projection method described above to solve the incompressible,

Navier-Stokes equations. Here we model cavity flow within a rectangular cavity. We have no slip

boundary conditions, e.g., u = 0 on the right wall, left wall, and bottom wall; however, on the top

wall we enforce the following condition

utop wall =

 vTan tanh 0.1t

0

 , (C.7)
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where vTan is some prescribed velocity. For this example we do not consider any spatially dependent

form of vTan to relax the velocity near the corners, e.g., some parabolic form such that near the

corners vTan|corner = 0; however, this is, of course, possible. We are simply illustrating one potential

example.

Figure C.1 shows snapshots from the cavity flow problem. Note that as the simulation progresses,

a vortex is formed; however, for the specified vTan it does not create a vortex in the whole cavity.

The colormap illustrates the magnitude of velocity and the vector field illustrates the direction of

flow. It is clear that the vortex rotates clockwise, i.e., the same direction as the imposed tangential

flow condition on the boundary. Note that near the bottom of the cavity, there will be a vortex

swirling counter-clockwise due to the shearing of the top vortex; however, its velocity is much lower

than near the top wall. This simulation was run on a 256× 128 grid.
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Figure C.1: Snapshots from the simulation using a projection method to model cavity flow. The
background colormap is of the magnitude of velocity and the vector field illustrates the fluid’s velocity
field.

C.2 Spectral Methods via Fast Fourier Transform (FFT)

We first consider the vorticity formulation of the incompressibile, Navier-Stokes equations,

∂ωωω

∂t
+∇× (ωωω × u) = ν∆ωωω (C.8)

∇·u = 0 (C.9)
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Using an identity from vector calculus,

∇× (A×B) = (∇ ·B−B · ∇)A− (∇ ·A + A · ∇B), (C.10)

we can mathematically massage (C.8) into the following form,

∂ωωω

∂t
+ u · ∇ωωω −ωωω · ∇u = ν∆ωωω. (C.11)

Note that (C.11) looks like an advection-diffusive-type equation (parabolic PDE), but with the

extra term, ωωω · ∇u. Using the incompressibility condition and properties of vorticity in 2D, this

term is identically zero, giving the following form of the momentum equation in terms of vorticity,

∂ωωω

∂t
+ u · ∇ωωω = ν∆ωωω. (C.12)

Next we introduce the streamfunction, ψ, as part of the vector potential for u,

u = ∇× ψk̂. (C.13)

Hence if we have our streamfunction, ψ = ψ(x, y), it is possible to get the components of the 2D

fluid velocity, u = (u, v), e.g.,

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (C.14)

Furthermore, taking the curl of (C.13), we are able to get a Poisson problem for ψ in terms of ωωω,

∆ψ = −ωωω, (C.15)

where we have used the following vector calculus identity,

∇×∇×A = ∇(∇ ·A)−∇2A, (C.16)

and the fact that ∂ψ
∂z = 0 since there is no z-component of the streamfunction. Note that if we
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are able to solve for the streamfunction, ψ, from ωωω, we can then get u and it will automatically

satisfy the incompressibility condition from the form of (C.13).

For this algorithm, we will work as much as possible in the Fourier frequency space, given by the

FFT. There are 3 main steps in the algorithm.

1. Solve the Poisson problem for the streamfunction, ψn, from the previous time-step’s vorticity,

ωωωn, i.e.,

ψ̂nij =
ωnij

k2
Xi

+ k2
Yj

, (C.17)

where kXi and kYj are the Fourier wave-numbers.

2. Next we compute the x, y-derivatives of the streamfunction, ψn and vorticity, ωωωn (in real

space), then compute discretized, advection term, and finally transform the advection term

into frequency space.

To do this we take derivatives in Frequency space of the streamfunction, ψ, and then use the

Inverse Fast Fourier Transverse, to put them back into real space.

unij = F−1
{
KY ψ̂

n
ij

}
(C.18)

vnij = F−1
{
−KX ψ̂

n
ij

}
(C.19)

ωnxij = F−1
{
KX ω̂

n
ij

}
(C.20)

ωnyij = F−1
{
KY ω̂

n
ij

}
(C.21)

(C.22)

Once you have the quantities back in real space, it is possible to compute the advection term,

Fnadvij , from (C.12), i.e.,

Fnadvij = unij · ωnxij + vnij · ωnyij (C.23)
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and then you can transform (C.23) into frequency space using FFT,

F̂nadvij = F
{
Fnadvij

}
. (C.24)

3. Finally we use the Crank-Nicholson scheme to update the streamfunction to the next time-step,

ψn+1,

ψ̂n+1
ij =

[
1 + ν∆t

2

(
k2
Xij

+ k2
Yij

) ]
ψ̂nij −∆t F̂nadvij

1− ν∆t
2

(
k2
Xij

+ k2
Yij

) (C.25)

Note that this method is semi-implicit, explicitly discretizing the advective term, while implicitly

discretizing the diffusive viscous term. The Crank-Nicholson scheme is second order accurate

in time [312], and is unconditionally stable for an array of parabolic problems of the type

wt = awxx [313].

C.2.1 Spectral Methods (FFT) Example

We show one example using the FFT spectral method described above to solve the incompressible,

vorticity formulation of the Navier-Stokes equations. Here we model regions of high and low vorticity

nested within one another, with a random assortment of vorticity values initialized outside of the

nested regions. The simulation begins and it is clear that mixing begins. There are no explicit

boundary conditions due to the periodicity of the FFT.

262



Figure C.2: Snapshots from the simulation using a spectral method (FFT) to solve the incompressible,
Navier-Stokes equations in the vorticity formulation. The background colormap is of vorticity.

Figure C.2 shows the dynamics within the simulation. The background colormap illustrates the

vorticity. It is evident that the nested vortices eventually begin to mix. Figure C.3 illustrates the

resulting velocity field and magnitude of velocity. This simulation was run on a 256× 256 grid.
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Figure C.3: Snapshots from the same simulation of nested vortices using a spectral method (FFT)
to solve the incompressible, Navier-Stokes equations in the vorticity formulation. These images
illustrate the magnitude of velocity and the background velocity field.

C.3 Lattice Boltzmann Methods

The Lattice Boltzmann method does not explicitly (or implicitly) solve the incompressible,

Navier-Stokes equations, rather it uses discrete Boltzmann equations to model the fluid dynamics.

In a nutshell tracks ficititious particles of fluid flow, thinking of the problem more as a transport

equation, e.g.,
∂f

∂t
+ u · ∇f = Ω, (C.26)

where f(x, t) is the particile distribution function, i.e., a probability density, u is the fluid particle’s

velocity, and Ω is what is called the collision operator. However, rather than have these particles

moving in a Lagrangian-type frame, the Lattice Boltzmann method simplifies this assumption and

restricts the particles to the nodes on a lattice. We will only discuss a two dimensional implementation

of this CFD method; however, a three dimensional implementation follows analogously.

From the assumption restricting the fluid particles to reside on a lattice, there are only a possibility

of 9 directions that a particle could potential stream, or pass information, along in. These directions

are of course in either horizontal or vertical or forward or backward diagonal directions, as well as,
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the staying at rest on its current node. These directions are illustrated in Figure C.4, and these

streaming velocities, {ei}, are called the microscopic velocities. The directions illustrated in Figure

C.4 is commonly called the D2Q9 Lattice Boltzmann Model.

Figure C.4: Figure illustrating the possible streaming directions, {ei} for the D2Q9 Lattice Boltzmann
model.

Now for every point on the lattice, we had a probability function, f(x, t), associated with it.

Discretizing this idea to account for the possibility of moving in the 9 directions described above, we

write it as fi(x, t), where fi now gives the probability of streaming in a particular direction ei. Using

this discretization, we can define the macroscopic fluid density to be the sum of all possible fi, e.g.,

ρ(x, t) =
8∑
i=0

fi(x, t). (C.27)

Similarly, we can define the macroscopic velocity of the fluid as an average of the microscopic

velocities in each direction weighted by their associated particle distribution functions fi using

(C.27),

u(x, t) =
1

ρ

8∑
i=0

cfi(x, t)ei, (C.28)

where c = ∆x
∆t and is referred to as the lattice speed. The key elements that are left to discuss are

exactly what it means to stream the particle distributions fi as well as what it meant by the collision,

Ω. However, this is essentially what the steps in the Lattice Boltzmann Algorithm are, so we will

explicitly define these procedures while describing the algorithmic steps. The steps are below.
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1. The first step is to stream the particle densities to propagate in each direction. Explicitly you

calculate the following intermediate particle density, f∗i ,

f∗i (x + cei∆t, t+ ∆t) = fni (x, t), (C.29)

where n is the time-step and where for each direction i, you would in practice compute

f∗1 (xi, yj) = fn1 (xi−1, yj), f∗2 (xi, yj) = fn2 (xi, yj−1), f∗3 (xi, yj) = fn3 (xi+1, yj),

f∗4 (xi, yj) = fn4 (xi, yj+1), f∗5 (xi, yj) = fn5 (xi−1, yj−1), f∗6 (xi, yj) = fn6 (xi+1, yj−1)

(C.30)

f∗7 (xi, yj) = fn7 (xi+1, yj+1), f∗8 (xi, yj) = fn8 (xi−1, yj+1), f∗9 (xi, yj) = fn9 (xi, yj)

This idea of streaming is show in Figure C.5.

Figure C.5: Figure illustrating the idea of streaming by showing color correlated particle probability
functions, fi, before the streaming process and post-streaming, f∗i .

2. The second step involves finding what is referred to as the equilibrium distribution. This

term is apart of the collision step, where you want to relax your particle density distributions

towards a local equilibrium. That local equilibrium is denoted feqi (x, t). First we must compute

macroscopic the properties (density and velocity) from the intermediate particle distributions

f∗i using (C.27) and (C.28).
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Once we have these quantities, we can now define the equilibrium distributions, feqi . We note

that there are many equilibrium distributions one could use in practice; however, each depends

on your model and its assumptions. The Lattice Boltzmann method available at [297] uses

what is called the Bhatnagar-Gross-Krook (BGK) collision [314]. The BGK collision model

is useful for simulating single phase flows [295] and is most often the classic model to use for

solving the incompressible Navier-Stokes equations, although it can also be useful for simulating

compressible flows at low Mach numbers [294]. See [294] for a good review of the BGK model.

The BGK model’s equilibrium distribution can be written as follows

feqi (x, t) = wiρ+ ρsi(u(x, t)), (C.31)

where wi is a weight and si(u(x, t)) is defined as

si(u(x, t)) = wi

[
3
ei · u
c

+
9

2

(ei · u)2

c2
− 3

2

u · u
c2

]
. (C.32)

The corresponding weights, wi are given as

wi =


4
9 i = 0

1
9 i ∈ {1, 2, 3, 4}
1
36 i ∈ {5, 6, 7, 8}

. (C.33)

3. Finally we compute the collision step associated with the BGK model is written as follows

fn+1
i = f∗i −

fi(x, t)− feqi (bf)
τ

, (C.34)

where τ is the relaxation parameter and intuitively is related to the viscosity of the fluid, i.e.,

ν =
2τ − 1

6

∆x2

∆t
. (C.35)

As of yet we have not mentioned any boundary conditions, but before we discuss that we will

discuss the advantages of the Lattice Boltzmann method. One of the tremendous advantages of
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Lattice Boltzmann is its implementation lends itself for large scale parallel GPU computing. Because

of these parallelization it can be an incredibly fast way of solving fluid problems coupled with

equations modeling heat transfer or chemical processes [315]. Moreover, the algorithm also prides

itself for the ability to compute flows through complex geometries and porous structures rather easily

and efficiently [316]. From the structure of the streaming step, one can easily prescribe boundary

conditions and regions in the grid where fluid is not allowed to flow easily. For our considerations

here we only will introduce what are referred to as bounce-back boundary conditions [316].

The bounce-back boundary conditions are used to enforce no-slip conditions; however, as we will

show, they are not only use on the edges of the domain, but can be implemented on the interior

to create complex geometries. In a nutshell the incoming streaming directions of the distribution

functions are simply reversed when they hit a boundary node. This idea is illustrated in Figure C.6.

One can simply mask these boundary points on the domain using boolean logic in practice.

Figure C.6: Illustration of bounce-back boundary conditions. The pre-streaming step there are
microscopic velocities set on the boundary and then they are reversed during the streaming step

C.3.1 Lattice Boltzmann Example

Here we present one example of fluid flow using the Lattice Boltzmann method. We model the

case of inflow going left to right across the domain with 3 (rigid) cylinders placed in the domain in

a triangular configuration. The simulation begins with no inflow and then gradually increases the

inflow velocity until a desired velocity is reached.
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Figure C.7: Snapshots from a Lattice Boltzmann simulation of flow around 3 cylinders. The
background colormap is vorticity. It is clear that vortex shedding occurs.

Figure C.7 shows the dynamics within the simulation at varying time-steps, n. The background

colormap illustrates the vorticity. It is evident that vortex shedding occurs as the simulation

progresses. Furthermore the symmetry in the fluids dynamics is maintained throughout. This

simulation was run using 65536 fluid particles (in a 256× 256 arrangement).

We note for a comparable grid size, 256× 256, the traditional immersed boundary method with

a FFT-based fluid solver will be more computationally expensive, making the Lattice Boltzmann

method a better choice for flow through rigid, complex geometries. However, for fully-coupled

fluid-structure interaction problems, one still needs an algorithm that relates the motion of an elastic

boundary to the fluid motion and vice-versa, such as the one that immersed boundary allows. On

that note, the Lattice Boltzmann method can be used in an immersed boundary method as the main

fluid solver [148] to help reduce the computational time.
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