Monotonic and Periodic Character of solutions of the Rational Difference Equation $x_{n+1}=\frac{A_{n} X_{n-1}}{1+X_{n}+X_{n-1}}$

Nicholas A. Battista and Michael A. Radin
Rochester Institute of Technology,
School of Mathematical and Sciences, 85 Lomb Memorial Drive, Rochester, New York 14623-5604, USA

February 23, 2009

Abstract

We investigate the monotonic and periodic character of the nonnegative solutions of the rational difference equation $$
x_{n+1}=x_{n+1}=\frac{A_{n} X_{n-1}}{1+X_{n}+X_{n-1}}, n=0,1, \ldots,
$$

where $\left\{A_{n}\right\}_{n=0}^{\infty}$ is a periodic sequence of positive real numbers.

1 Introduction.

First we consider the autonomous difference equation:

$$
\begin{equation*}
X_{n+1}=\frac{A X_{n-1}}{1+X_{n}+X_{n-1}} \quad, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $\mathrm{A}>0$ and the initial conditions, X_{-1} and X_{0}, are non-negative real numbers. The following properties were proved about Eq.(1) in [9]:

1. If $\mathrm{A} \leq 1$, then every positive solution converges to zero.
2. If $\mathrm{A}>1$, then either Eq.(1) has solutions with minimal period 2 or every positive solution of Eq.(1) converges to a period 2 cycle.

It is our goal of this paper to study the long-term behavior of the positive solutions of the nonautonomous difference equation

$$
\begin{equation*}
X_{n+1}=\frac{A_{n} X_{n-1}}{1+X_{n}+X_{n-1}}, \quad n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

where $\left\{A_{n}\right\}_{n=0}^{\infty}$ is a periodic sequence of positive real numbers with an even period and the initial conditions, X_{-1} and X_{0}, are non-negative real numbers. In particular, it is our goal to discover how the period(s) and the rearrangement of terms of the sequence $\left\{A_{n}\right\}_{n=0}^{\infty}$ affect the periodic and monotonic behavior of the solutions. In addition, it is our goal to discover the differences in the behavior of the solutions of Eq.(2) compared to the behavior of solutions of Eq.(1).

The following Theorem will show that every positive solution of Eq.(2) is bounded.
Theorem 1.1 Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2) and let $\left\{A_{n}\right\}_{n=0}^{\infty}$ be a sequence of positive real numbers with a finite period $k=2,3,4, \ldots$ and let

$$
M=\max \left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\}
$$

Then for all $n \geq 1 X_{n} \leq M$.
Proof : Observe that for all $n \geq 0$,

$$
A_{n} \leq M
$$

Now notice that for all $n \geq 0$,

$$
X_{n+1}=\frac{A_{n} X_{n-1}}{1+X_{n}+X_{n-1}} \leq \frac{A_{n} X_{n-1}}{X_{n-1}}=A_{n} \leq M
$$

Hence the result follows.

The Following Theorem by E. Camouzis and G. Ladas will be used to prove convergence of solutions of Eq.(2) to periodic cycles throughout this paper.
Theorem 1.2 Let I be a set of real numbers, and let

$$
F: I \times I \rightarrow I
$$

be a function $F(u, v)$, which decreases in u and increases in v. Then for every solution $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of the equation

$$
X_{n+1}=F\left(X_{n}, X_{n-1}\right) ; \quad n=0,1,2, \ldots
$$

the subsequences $\left\{X_{2 n}\right\}_{n=0}^{\infty}$ and $\left\{X_{2 n+1}\right\}_{n=-1}^{\infty}$ of even and odd terms are eventually monotonic.
It is interesting to note that Theorem(1.2) has a straightforward extension to non-autonomous difference equations.

2 The Case $\left\{A_{n}\right\}_{n=0}^{\infty}$ is periodic with period 2.

In this section we will assume that $\left\{A_{n}\right\}_{n=0}^{\infty}$ is periodic with minimal period 2. Now let

$$
\mathrm{M}=\max \left\{A_{0}, A_{1}\right\}
$$

It is our goal to prove the following properties of Eq.(2).

1. If $\mathrm{M} \leq 1$, then every positive solution of Eq.(2) converges to zero.
2. If $M>1$, then Eq.(2) has period 2 solutions or every positive solution of Eq.(2) converges to the period 2 cycle.

2.1 Convergence to Zero.

In this section we will assume that $\mathrm{M} \leq 1$ and show that every positive solution of Eq.(2) will converge to zero. First we will prove very useful lemmas.

Lemma 2.1 Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Suppose that $M<1$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

Proof : Notice that by iteration and inequalities, we get

$$
X_{1}=\frac{A_{0} X_{-1}}{1+X_{0}+X_{-1}}<A_{0} X_{-1}, \quad X_{3}=\frac{A_{0} X_{1}}{1+X_{2}+X_{1}}<A_{0} X_{1}<A_{0}^{2} X_{-1}, \quad X_{5}=\frac{A_{0} X_{3}}{1+X_{4}+X_{3}}<A_{0} X_{3}<A_{0}^{3} X_{-1}, \ldots
$$

Then it follows by induction that for all $n \geq 0$,

$$
\begin{equation*}
X_{2 n+1}<A_{0}^{n+1} X_{-1} \text { and we see that } \lim _{n \rightarrow \infty} X_{2 n+1}=0 \tag{3}
\end{equation*}
$$

Similarly, we show that for all $n \geq 1$,

$$
\begin{equation*}
X_{2 n}<A_{1}^{n} X_{0} \text { and thus } \lim _{n \rightarrow \infty} X_{2 n}=0 \tag{4}
\end{equation*}
$$

Hence the result follows via (3) and (4).
Lemma 2.2 Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Suppose that $M=1$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

Proof : First we will consider the case where $A_{0}=1$ and $A_{1}<1$. The case where $A_{1}=1$ and $A_{0}<1$ is similar and will be omitted. Similarly as in Lemma(2.1), it follows by computation, iterations, and induction that for all $n \geq 1$,

$$
X_{2 n}<A_{1}^{n} X_{0} \quad \text { and hence } \quad \lim _{n \rightarrow \infty} X_{2 n}=0
$$

Also by computation, iterations, and induction it follows that for all $n \geq 0$,

$$
X_{2 n+1}<X_{2 n-1}<\ldots<X_{3}<X_{1}<X_{-1}
$$

Then there exists $L_{O} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} X_{2 n+1}=L_{O}
$$

It suffices to show that $L_{O}=0$. Notice that using the properties of limits and iterations we get:

$$
\lim _{n \rightarrow \infty} X_{2 n+1}=\lim _{n \rightarrow \infty} \frac{A_{2 n} X_{2 n-1}}{1+X_{2 n}+X_{2 n-1}}=\frac{A_{0} L_{O}}{1+0+L_{O}}=L_{0}
$$

Hence we see that

$$
L_{O}=A_{0}-1=0
$$

Theorem 2.3 Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Suppose that $M \leq 1$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

Proof : The proof follows from Lemma(2.1) and Lemma(2.2).

2.2 Existence of Solutions with minimal period 2.

In this section we will assume that $M>1$ and show the existence of two unique solutions with minimal period 2.

Lemma 2.3 Eq.(2) has a solution with minimal period 2 if and only if $M>1$.
Proof : Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Via Theorem(2.1) we showed that when $M \leq 1$ then $\lim _{n \rightarrow \infty} X_{n}=0$. Thus it suffices to consider the case where $M>1$. Therefore we will assume that $X_{-1} \neq X_{0}$, and we set $X_{-1}=X_{1}$ and $X_{2}=X_{0}$. By substitutions and iterations we get

$$
X_{1}=\frac{A_{0} X_{-1}}{1+X_{0}+X_{-1}}=X_{-1}, \quad X_{2}=\frac{A_{1} X_{0}}{1+X_{1}+X_{0}}=\frac{A_{1} X_{0}}{1+X_{-1}+X_{0}}=X_{0}, \ldots
$$

which gives us

$$
\begin{equation*}
A_{0}=1+X_{0}+X_{-1} \quad \text { or } \quad A_{1}=1+X_{0}+X_{-1} \tag{5}
\end{equation*}
$$

From (5) we get one of the following conditions

$$
X_{0}=\left(A_{0}-1\right)-X_{-1} \text { or } X_{-1}=\left(A_{1}-1\right)-X_{0}
$$

Now we consider the following two cases:

Case 1 : First suppose that $M=A_{0}>1$. Then we get

$$
X_{0}=\left(A_{0}-1\right)-X_{-1}
$$

Now observe that by iteration, it follows that

$$
\begin{aligned}
X_{1} & =\frac{A_{0} X_{-1}}{1+X_{0}+X_{-1}}=\frac{A_{0} X_{-1}}{1+\left(A_{0}-1-X_{-1}\right)+X_{-1}}=\frac{A_{0} X_{-1}}{A_{0}}=X_{-1} \\
X_{2} & =\frac{A_{1} X_{0}}{1+X_{1}+X_{0}}=\frac{A_{1} X_{0}}{1+X_{-1}+X_{0}}=\frac{A_{1} X_{0}}{1+X_{-1}+\left(A_{0}-1-X_{-1}\right)}=\frac{A_{1} X_{0}}{A_{0}}=X_{0}
\end{aligned}
$$

Note that $X_{2}=X_{0}$ provided that $X_{0}=0$ as $A_{1} \neq A_{0}$. Hence when $A_{0}>1$, then the unique period 2 cycle is

$$
X_{0}=0 \text { and } X_{-1}=A_{0}-1
$$

Case 2 : Now suppose that $M=A_{1}>1$. Then we have

$$
X_{-1}=\left(A_{1}-1\right)-X_{0}
$$

Similarly as in Case(1), we get the following unique period 2 cycle

$$
X_{-1}=0 \text { and } X_{0}=A_{1}-1
$$

Theorem 2.4 Suppose that $X_{-1}>0, X_{0}>0$, and $M>1$. Then every solution of Eq.(2) converges to a period 2 cycle.

Proof : First recall that for all $n \geq 1$,

$$
0<X_{n}<M
$$

Now let

$$
F(u, v)=\frac{A v}{1+u+v}
$$

Then we see for $u, v>0$ that $f_{u}(u, v)<0$ and $f_{v}(u, v)>0$.
Now let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Then via Theorem(1.1), $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have finitely many eventually monotonic subsequences. Recall that when $M>1$, then Eq.(2) has two unique period 2 cycles. Therefore the result follows that the solution $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have two eventually monotonic subsequences $\left\{X_{2 n}\right\}_{n=0}^{\infty}$ and $\left\{X_{2 n+1}\right\}_{n=-1}^{\infty}$.

Remark 1 From Theorem(4.10) and lemma(2.3), we can show that
(i) If $\mathrm{M}=A_{0}>1$, then

$$
\lim _{n \rightarrow \infty} X_{2 n}=0 \text { and } \lim _{n \rightarrow \infty} X_{2 n+1}=A_{0}-1
$$

(ii) If $\mathrm{M}=A_{1}>1$, then

$$
\lim _{n \rightarrow \infty} X_{2 n+1}=0 \text { and } \lim _{n \rightarrow \infty} X_{2 n+2}=A_{1}-1
$$

3 The Case $\left\{A_{n}\right\}_{n=0}^{\infty}$ is periodic with period 4.

In this section we will assume that $\left\{A_{n}\right\}_{n=0}^{\infty}$ is periodic with minimal period 4 . Now let

$$
\mathrm{M}=\max \left\{A_{0}, A_{1}, A_{2}, A_{3}\right\}, \quad P_{02}=A_{0} A_{2} \quad \text { and } P_{13}=A_{1} A_{3}
$$

3.1 Convergence to Zero when $M \leq 1$.

In this section we will assume that $M \leq 1$. We will show that every positive solution of Eq.(2) will converge to zero.

Lemma 3.4 Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Suppose that $M \leq 1$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

Proof : The case when $M<1$ is similar to the proof in Lemma(2.1) and will be omitted. Thus we will consider the case when $M=1$; in particular, when $A_{0}=1, A_{1}<1, A_{2}=1$, and $A_{3}=1$. All other cases are similar and will be omitted. As in lemma(2.1), by computations and inequalities, it follows by induction that for all $n \geq 1$,

$$
X_{4 n}<A_{1}^{n} X_{0} \text { and } X_{4 n+2}<A_{1}^{n+1} X_{0}
$$

from which we get

$$
\lim _{n \rightarrow \infty} X_{4 n}=0 \text { and } \lim _{n \rightarrow \infty} X_{4 n+2}=0
$$

Similarly we show that it follows by induction that for all $n \geq 0$,

$$
X_{-1}>X_{1}>\ldots>X_{2 n-1}>X_{2 n+1}
$$

Then there exists $L_{2} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} X_{2 n+1}=L_{2}
$$

It now suffices to show that $L_{2}=0$. Notice that using the properties of limits of Eq.(2) we get:

$$
\lim _{n \rightarrow \infty} X_{2 n+1}=\lim _{n \rightarrow \infty} \frac{A_{0} X_{2 n-1}}{1+X_{2 n}+X_{2 n-1}}=\frac{A_{0} L_{2}}{1+0+L_{2}}=L_{2}
$$

Hence we see that

$$
L_{2}=A_{0}-1=0
$$

from which the result follows.

3.2 Convergence to Zero when $A_{0} A_{2} \leq 1$ and $A_{1} A_{3} \leq 1$.

In this section we will assume that $M>1, A_{0} A_{2} \leq 1$, and $A_{1} A_{3} \leq 1$. We will show that every positive solution of Eq.(2) will converge to zero.

Lemma 3.5 Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Suppose that $A_{0} A_{2} \leq 1$ and $A_{1} A_{3} \leq 1$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

Proof : Observe by iteration and inequalities, we get:

$$
\begin{aligned}
& X_{1}=\frac{A_{0} X_{-1}}{1+X_{0}+X_{-1}}, \quad X_{3}=\frac{A_{2} X_{1}}{1+X_{2}+X_{1}}<A_{2} X_{1}<\left(A_{2} A_{0}\right) X_{-1} \leq X_{-1} \\
& X_{5}=\frac{A_{0} X_{3}}{1+X_{4}+X_{3}}<A_{0} X_{3}<\left(A_{2} A_{0}\right) X_{1} \leq X_{1}, \quad X_{7}=\frac{A_{2} X_{5}}{1+X_{6}+X_{5}}<A_{2} X_{5}<\left(A_{2} A_{0}\right) X_{3} \leq X_{3}, \ldots
\end{aligned}
$$

So we see that for all $n \geq 0$,

$$
X_{4 n+3}<X_{4 n-1}<\ldots X_{7}<X_{3}<X_{-1} \quad \text { and } X_{4 n+5}<X_{4 n+1}<\ldots<X_{9}<X_{5}<X_{1}
$$

So there exists $L_{1} \geq 0$ and $L_{3} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} X_{4 n+1}=L_{1} \text { and } \lim _{n \rightarrow \infty} X_{4 n+3}=L_{3}
$$

Similarly as $A_{3} A_{1} \leq 1$ we see that

$$
X_{4 n+4}<X_{4 n}<\ldots X_{8}<X_{4}<X_{0} \quad \text { and } \quad X_{4 n+6}<X_{4 n+2}<\ldots<X_{10}<X_{6}<X_{2}
$$

So there exists $L_{4} \geq 0$ and $L_{2} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} X_{4 n}=L_{4} \text { and } \lim _{n \rightarrow \infty} X_{4 n+2}=L_{2}
$$

It suffices to show that

$$
L_{1}=L_{2}=L_{3}=L_{4}=0
$$

By iterations and properties of limits we get:

$$
L_{1}=\frac{A_{0} L_{3}}{1+L_{4}+L_{3}}, \quad L_{2}=\frac{A_{1} L_{4}}{1+L_{1}+L_{4}}, \quad L_{3}=\frac{A_{2} L_{1}}{1+L_{2}+L_{1}}, \quad L_{4}=\frac{A_{3} L_{2}}{1+L_{3}+L_{2}}
$$

Now we will consider two cases:
Case 1 : Suppose that $A_{0} A_{2}=1$. Then notice that by iterations and inequalities

$$
L_{4 n+3}=\frac{A_{2} L_{1}}{1+L_{2}+L_{1}} \leq A_{2} L_{1}=\frac{A_{2} A_{0} L_{3}}{1+L_{4}+L_{3}}=\frac{L_{3}}{1+L_{4}+L_{3}}
$$

So we see that

$$
L_{3} \leq \frac{L_{3}}{1+L_{4}+L_{3}} \text { and hence } L_{4}+L_{3}=0
$$

Now observe that

$$
L_{1}=\frac{A_{0} L_{3}}{1+L_{4}+L_{3}}=0 \quad \text { and } \quad L_{2}=\frac{A_{1} L_{4}}{1+L_{1}+L_{4}}=0
$$

Hence the result follows.
Case 2 : Suppose that $A_{0} A_{2}<1$. Note that in Case 1 we saw that

$$
X_{3}<\left[A_{0} A_{2}\right] X_{-1} \quad \text { and } \quad X_{7}<\left[A_{0} A_{2}\right]^{2} X_{-1}
$$

Then it follows that

$$
\lim _{n \rightarrow \infty} X_{4 n+3}=0
$$

Similarly we show that

$$
\lim _{n \rightarrow \infty} X_{4 n+1}=0
$$

Furthermore, as we know that $A_{1} A_{3} \leq 1$, then

$$
L_{2}=\frac{A_{1} L_{4}}{1+L_{1}+L_{4}}=\frac{A_{1} L_{4}}{1+L_{4}}=\frac{A_{1}\left[\frac{A_{3} L_{2}}{1+L_{1}+L_{2}}\right]}{1+\frac{A_{3} L_{2}}{1+L_{1}+L_{2}}}=\frac{\left[A_{1} A_{3}\right] L_{2}}{1+L_{1}+L_{2}+A_{3} L_{2}} \leq \frac{\left[A_{1} A_{3}\right] L_{2}}{1+L_{1}+L_{2}}=\frac{\left[A_{1} A_{3}\right] L_{2}}{1+L_{2}}
$$

If $A_{1} A_{3}<1$, then the result follows that

$$
\lim _{n \rightarrow \infty} X_{4 n}=\lim _{n \rightarrow \infty} X_{4 n+2}=0
$$

If $A_{1} A_{3}=1$, then it follows that

$$
1+L_{2}=1 \text { and thus } L_{2}=0
$$

3.3 Existence of Solutions with Minimal Period 2.

In this section we will assume that $\mathrm{M}>1$ and show that Eq.(2) has 2 unique solutions with minimal period 2. We will assume that either

$$
A_{0}=A_{2}>1 \text { or } A_{1}=A_{3}>1
$$

Lemma 3.6 Eq.(2) has a positive solution with minimal period 2 if either $A_{0}=A_{2}>1$ or $A_{1}=A_{3}>1$.
Proof : Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Via Lemma(3.4) we showed that when $M \leq 1$,

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

Thus it suffices to consider the case when $M>1$. Similarly as in Lemma(2.3) we set

$$
X_{3}=X_{1}=X_{-1} \quad \text { and } \quad X_{4}=X_{2}=X_{0}
$$

from which we get

$$
\begin{equation*}
A_{0}=1+X_{0}+X_{-1}=A_{2} \quad \text { or } \quad A_{1}=1+X_{0}+X_{-1}=A_{3} \tag{6}
\end{equation*}
$$

From (6) and we see that either $A_{0}=A_{2}$ or $A_{1}=A_{3}$, and we get one of the following conditions

$$
X_{0}=\left(A_{0}-1\right)-X_{-1} \text { or } X_{-1}=\left(A_{1}-1\right)-X_{0}
$$

Now we consider the following two cases:
Case 1 : First suppose that $M=A_{0}=A_{2}>1$. Then we get

$$
X_{0}=\left(A_{0}-1\right)-X_{-1}
$$

Now observe that by iteration, it follows that

$$
\begin{aligned}
& X_{1}=\frac{A_{0} X_{-1}}{1+X_{0}+X_{-1}}=\frac{A_{0} X_{-1}}{1+\left(A_{0}-1-X_{-1}\right)+X_{-1}}=\frac{A_{0} X_{-1}}{A_{0}}=X_{-1} \\
& X_{2}=\frac{A_{1} X_{0}}{1+X_{1}+X_{0}}=\frac{A_{1} X_{0}}{1+X_{-1}+X_{0}}=\frac{A_{1} X_{0}}{1+X_{-1}+\left(A_{0}-1-X_{-1}\right)}=\frac{A_{1} X_{0}}{A_{0}}=X_{0}
\end{aligned}
$$

Note that $X_{2}=X_{0}$ provided that $X_{0}=0$ as $A_{1} \neq A_{0}$. Then we proceed with the next two iterations and we get:

$$
\begin{aligned}
X_{3} & =\frac{A_{2} X_{1}}{1+X_{2}+X_{1}}=\frac{A_{0} X_{-1}}{1+\left(A_{0}-1-X_{-1}\right)+X_{-1}}=\frac{A_{0} X_{-1}}{1+\left(A_{0}-1-X_{-1}\right)+X_{-1}}=X_{-1} \\
X_{4} & =\frac{A_{3} X_{2}}{1+X_{3}+X_{2}}=\frac{A_{3} X_{0}}{1+X_{-1}+X_{0}}=\frac{A_{3} X_{0}}{1+X_{-1}+\left(A_{0}-1-X_{-1}\right)}=\frac{A_{3} X_{0}}{A_{0}}=X_{0}
\end{aligned}
$$

Note that $A_{0}=A_{2}$ in order for the equalities to hold and that $X_{4}=X_{2}=X_{0}$ provided $X_{0}=0$ as $A_{3} \neq A_{0}$. Hence when $A_{0}=A_{2}>1$, then the unique period 2 cycle is

$$
X_{0}=0 \text { and } X_{-1}=A_{0}-1
$$

Case 2 : Now suppose that $M=A_{1}=A_{3}>1$. Then we have

$$
X_{-1}=\left(A_{1}-1\right)-X_{0}
$$

Similarly as in Case(1), we get the following unique period 2 cycle

$$
X_{-1}=0 \text { and } X_{0}=A_{1}-1
$$

Note: This is identically the same period 2 cycle as in Theorem(2.3) of Section(2.2).

Theorem 3.5 Suppose that $X_{-1}>0, X_{0}>0$, and if either $A_{0}=A_{2}>1$ and $A_{0}^{2} \geq A_{1} A_{3}$ or $A_{1}=A_{3}>1$ and $A_{1}^{2} \geq A_{0} A_{2}$. Then every solution of Eq.(2) converges to a period 2 cycle.

Proof : From Theorem(1.1) recall that for all $n \geq 1$,

$$
0<X_{n}<M
$$

Now let

$$
F(u, v)=\frac{A v}{1+u+v}
$$

Then we see for $u, v>0$ that $f_{u}(u, v)<0$ and $f_{v}(u, v)>0$.
Now let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Then via Theorem(1.1), $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have finitely many eventually monotonic subsequences. Recall that when $M>1$, then Eq.(2) has two unique period 2 cycles. Therefore the result follows that the solution $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have two eventually monotonic subsequences $\left\{X_{2 n}\right\}_{n=0}^{\infty}$ and $\left\{X_{2 n+1}\right\}_{n=-1}^{\infty}$.

Remark 2 From Theorem(4.10) and lemma(4.9), we can show that
(i) $A_{0}=A_{2}>1$ and $A_{0}^{2} \geq A_{1} A_{3}$, then

$$
\lim _{n \rightarrow \infty} X_{2 n}=0 \text { and } \lim _{n \rightarrow \infty} X_{2 n+1}=A_{0}-1
$$

(ii) $A_{1}=A_{3}>1$ and $A_{1}^{2} \geq A_{0} A_{2}$, then

$$
\lim _{n \rightarrow \infty} X_{2 n+1}=0 \text { and } \lim _{n \rightarrow \infty} X_{2 n}=A_{1}-1
$$

3.4 Existence of Solutions with Minimal Period 4.

In this section we will show that Eq.(2) has a unique solution with minimal period 4 . We will assume that

$$
A_{0} \neq A_{2} \text { and } A_{1} \neq A_{3} .
$$

Lemma 3.7 Eq.(2) has a solution with minimum period 4 if either $A_{0} \neq A_{2}$ and $P_{02}>1$ or $A_{1} \neq A_{3}$, and $P_{13}>1$.

Proof : Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2) such that $A_{0} \neq A_{2}$ and $P_{02}>1$. The case where $A_{1} \neq A_{3}$ and $P_{13}>1$ is similar and will be omitted. Observe that

$$
\begin{aligned}
& X_{1}=\frac{A_{0} X_{-1}}{1+X_{0}+X_{-1}}=\frac{A_{0} X_{-1}}{1+X_{-1}}, X_{2}=\frac{A_{1} X_{0}}{1+X_{1}+X_{0}}=0 \\
& X_{3}=\frac{A_{2} X_{1}}{1+X_{2}+X_{1}}=\frac{A_{2} X_{1}}{1+X_{1}}, X_{4}=\frac{A_{3} X_{2}}{1+X_{3}+X_{2}}=\frac{A_{3} X_{2}}{1+X_{3}}=0, \ldots
\end{aligned}
$$

Now we set

$$
X_{3}=X_{-1}
$$

Then observe that

$$
X_{3}=\frac{A_{2} X_{1}}{1+X_{1}}=\frac{\frac{A_{2} A_{0} X_{-1}}{1+X_{-1}}}{1+\frac{A_{0} X_{-1}}{1+X_{-1}}}=\frac{A_{2} A_{0} X_{-1}}{1+X_{-1}+A_{0} X_{-1}}=X_{-1} .
$$

This then implies that

$$
A_{2} A_{0}=1+X_{-1}+A_{0} X_{-1}=1+X_{-1}\left(1+A_{0}\right)
$$

From the equality above, we get

$$
X_{-1}=\frac{A_{2} A_{0}-1}{1+A_{0}}
$$

Therefore proceeding with the substitutions we get

$$
X_{1}=\frac{A_{0} X_{-1}}{1+X_{-1}}=\frac{A_{0}\left[\frac{A_{2} A_{0}-1}{1+A_{0}}\right]}{1+\left[\frac{A_{2} A_{0}-1}{1+A_{0}}\right]}=\frac{A_{2} A_{0}^{2}-A_{0}}{1+A_{0}+A_{2} A_{0}-1}=\frac{A_{0}\left(A_{2} A_{0}-1\right)}{A_{0}\left(1+A_{2}\right)}=\frac{A_{2} A_{0}-1}{1+A_{2}}
$$

Hence we see that the unique period 4 cycle is

$$
X_{-1}=\frac{A_{2} A_{0}-1}{1+A_{0}}, \quad X_{0}=0, \quad X_{1}=\frac{A_{2} A_{0}-1}{1+A_{2}}, \quad X_{2}=0
$$

Note: In this case if $A_{0}=A_{2}$, then the period 4 cycle becomes a period 2 cycle. Similarly, the unique period 4 cycle when $X_{-1}=0, A_{1} \neq A_{3}$, and $P_{13}>1$, is

$$
X_{-1}=0, \quad X_{0}=\frac{A_{3} A_{1}-1}{1+A_{1}}, \quad X_{1}=0, \quad X_{2}=\frac{A_{3} A_{1}-1}{1+A_{3}}
$$

Note: In this case if $A_{1}=A_{3}>1$ then the period 4 cycle becomes a period 2 cycle.

3.5 Existence of a Positive Solution with Minimal Period 4.

In this section we will show that Eq.(2) has a unique positive solution with minimal period 4. We will assume that

$$
A_{0} \neq A_{2}, A_{1} \neq A_{3}, P_{02}=P_{13}>1, X_{-1}>0, \text { and } X_{0}>0
$$

Lemma 3.8 Eq.(2) has a positive solution with minimum period 4 if either:
(i) $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}<A_{2}, A_{1}>A_{3}, A_{1}>A_{2}$,
(ii) $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}>A_{2}, A_{1}<A_{3}, A_{3}>A_{0}$,
(iii) $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}>A_{2}, A_{1}>A_{3}, A_{0}>A_{1}$, or
(iv) $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}<A_{2}, A_{1}<A_{3}, A_{2}>A_{3}$,

Proof : Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2) such that $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq$ $A_{3}, A_{0}<A_{2}, A_{1}>A_{3}$, and $A_{1}>A_{2}$. The other cases are similar and will be omitted. Observe that when $X_{-1}=X_{1}$, we get

$$
X_{1}=\frac{A_{0} X_{-1}}{1+X_{0}+X_{-1}}=X_{-1}
$$

This implies that

$$
\begin{equation*}
A_{0}=1+X_{0}+X_{-1} \tag{7}
\end{equation*}
$$

and hence from (7) and substitutions we get

$$
\begin{align*}
& X_{2}=\frac{A_{1} X_{0}}{1+X_{0}+X_{-1}}=\frac{A_{1} X_{0}}{A_{0}} \tag{8}\\
& X_{3}=\frac{A_{2} X_{1}}{1+X_{2}+X_{1}}=\frac{A_{2} X_{-1}}{1+\left[\frac{A_{1} X_{0}}{A_{0}}\right]+X_{-1}}=X_{-1} \tag{9}\\
& X_{4}=\frac{A_{3} X_{2}}{1+X_{3}+X_{2}}=\frac{A_{3} X_{2}}{1+X_{-1}+X_{2}}=\frac{A_{3}\left[\frac{A_{1} X_{0}}{A_{0}}\right]}{1+X_{-1}+\left[\frac{A_{1} X_{0}}{A_{0}}\right]}=X_{0} \tag{10}
\end{align*}
$$

Then we see from (9) and (10) that

$$
\begin{equation*}
A_{2}=1+\frac{A_{1} X_{0}}{A_{0}}+X_{-1} \text { and } \frac{A_{1} A_{3}}{A_{0}}=1+X_{-1}+\frac{A_{1} X_{0}}{A_{0}} \tag{11}
\end{equation*}
$$

Therefore from (11) we get the following relation,

$$
\begin{equation*}
A_{0} A_{2}=A_{0}+A_{1} X_{0}+A_{0} X_{-1}=A_{1} A_{3} \tag{12}
\end{equation*}
$$

It is clear from (12) that

$$
\begin{equation*}
A_{0} A_{2}=A_{1} A_{3} \quad \text { and } \quad A_{0} A_{2}-A_{0}-A_{0} X_{-1}=A_{0}\left[A_{2}-\left(1+X_{-1}\right)\right]=A_{1} X_{0} \tag{13}
\end{equation*}
$$

Now from (7), we substitute

$$
1+X_{-1}=A_{0}-X_{0}
$$

into (13) and we get

$$
A_{0} A_{2}-A_{0}^{2}+A_{0} X_{0}=A_{1} X_{0} \quad \text { and therefore } A_{0} A_{2}-A_{0}^{2}=X_{0}\left(A_{1}-A_{0}\right)
$$

Hence we see that

$$
X_{0}=\frac{A_{0} A_{2}-A_{0}^{2}}{A_{1}-A_{0}}
$$

Therefore the unique positive period 4 cycle we get with the following pattern:

$$
\begin{array}{lc}
X_{-1}=\frac{A_{0}\left(A_{1}-A_{2}\right)-A_{1}+A_{0}}{A_{1}-A_{0}}, & X_{0}=\frac{A_{0} A_{2}-A_{0}^{2}}{A_{1}-A_{0}} \\
X_{1}=\frac{A_{0}\left(A_{1}-A_{2}\right)-A_{1}+A_{0}}{A_{1}-A_{0}}, & X_{2}=\frac{A_{0} A_{1} A_{2}-A_{0}^{2} A_{1}}{A_{0} A_{1}-A_{0}^{2}}
\end{array}
$$

We will also get the above unique period 4 cycle when $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}>A_{2}, A_{1}<$ $A_{3}, A_{3}>A_{0}$. Similarly when $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}>A_{2}, A_{1}>A_{3}, A_{0}>A_{1}$, or when $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}<A_{2}, A_{1}<A_{3}, A_{2}>A_{3}$, we get another unique positive period 4 cycle with the following pattern:

$$
\begin{aligned}
& X_{-1}=\frac{A_{1} A_{2} A_{3}-A_{1}^{2} A_{2}}{A_{1} A_{2}-A_{1}^{2}}, \quad X_{0}=\frac{A_{1}\left(A_{2}-A_{3}\right)-A_{2}+A_{1}}{A_{2}-A_{1}} \\
& X_{1}=\frac{A_{1} A_{3}-A_{1}^{2}}{A_{2}-A_{1}}, \quad X_{2}=\frac{A_{1}\left(A_{2}-A_{3}\right)-A_{2}+A_{1}}{A_{2}-A_{1}}
\end{aligned}
$$

Theorem 3.6 Suppose that $X_{-1}>0, X_{0}>0, A_{0} \neq A_{2}, A_{1} \neq A_{3}$, and either $A_{0} A_{2}>1$ or $A_{1} A_{3}>1$.
Then every solution of Eq.(2) converges to a period 4 cycle.
Proof : From Theorem(1.1) recall that for all $n \geq 1$,

$$
0<X_{n}<M
$$

Now let

$$
F(u, v)=\frac{A v}{1+u+v}
$$

Then we see for $u, v>0$ that $f_{u}(u, v)<0$ and $f_{v}(u, v)>0$.
Now let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Then via Theorem(1.1), $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have finitely many eventually monotonic subsequences. Recall that when $P_{02}>1$ or $P_{13}>1$, then Eq.(2) has four unique period 4 cycles. Therefore the result follows that the solution $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have four eventually monotonic subsequences $\left\{X_{4 n}\right\}_{n=0}^{\infty},\left\{X_{4 n+1}\right\}_{n=-1}^{\infty},\left\{X_{4 n+2}\right\}_{n=-1}^{\infty}$, and $\left\{X_{4 n+3}\right\}_{n=-1}^{\infty}$.
Remark 3 Suppose $X_{-1}>0$ and $X_{0}>0$. Then Eq.(2) converges to a solution with minimal period 4 if either:
(i) $A_{0} \neq A_{2}, P_{02}>1$, and $A_{0} A_{2}>A_{1} A_{3}$, or if $A_{0} A_{2}=A_{1} A_{3}, A_{0}>A_{2}, A_{1}<A_{3}$, and $A_{3}<A_{0}$, or if $A_{0} A_{2}=A_{1} A_{3}, A_{0}>A_{2}, A_{1}>A_{3}$, and $A_{0}<A_{1}$, then

$$
\lim _{n \rightarrow \infty} X_{4 n}=\lim _{n \rightarrow \infty} X_{4 n+2}=0, \lim _{n \rightarrow \infty} X_{4 n-1}=\frac{A_{2} A_{0}-1}{1+A_{0}}, \text { and } \lim _{n \rightarrow \infty} X_{4 n+1}=\frac{A_{2} A_{0}-1}{1+A_{2}} .
$$

(ii) $A_{1} \neq A_{3}, P_{13}>1$, and $A_{1} A_{3}>A_{0} A_{2}$, or if $A_{0} A_{2}=A_{1} A_{3}, A_{0}<A_{2}, A_{1}>A_{3}$, and $A_{1}<A_{2}$, or if $A_{0} A_{2}=A_{1} A_{3}, A_{0}<A_{2}, A_{1}>A_{3}$, and $A_{1}>A_{2}$ then

$$
\lim _{n \rightarrow \infty} X_{4 n-1}=\lim _{n \rightarrow \infty} X_{4 n+1}=0, \lim _{n \rightarrow \infty} X_{4 n}=\frac{A_{3} A_{1}-1}{1+A_{1}}, \text { and } \lim _{n \rightarrow \infty} X_{4 n+2}=\frac{A_{3} A_{1}-1}{1+A_{3}} .
$$

(iii) If $A_{0} A_{2}=A_{1} A_{3}, A_{0}<A_{2}, A_{1}>A_{3}$, and $A_{1}>A_{2}$ or if $A_{0} A_{2}=A_{1} A_{3}, A_{2}<A_{0}, A_{1}<A_{3}$, and $A_{3}>A_{0}$, then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} X_{4 n-1}=\lim _{n \rightarrow \infty} X_{4 n+1}=\frac{A_{0}\left(A_{1}-A_{2}\right)-A_{1}+A_{0}}{A_{1}-A_{0}} \\
\lim _{n \rightarrow \infty} X_{4 n}=\frac{A_{0} A_{2}-A_{0}^{2}}{A_{1}-A_{0}}, \lim _{n \rightarrow \infty} X_{4 n+2}=\frac{A_{0} A_{1} A_{2}-A_{0}^{2} A_{1}}{A_{0} A_{1}-A_{0}^{2}} .
\end{gathered}
$$

(iv) If $A_{0} A_{2}=A_{1} A_{3}, A_{0}>A_{2}, A_{1}>A_{3}$, and $A_{0}>A_{1}$ or if $A_{0} A_{2}=A_{1} A_{3}, A_{0}<A_{2}, A_{1}<A_{3}$, and $A_{2}>A_{3}$, then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} X_{4 n}=\lim _{n \rightarrow \infty} X_{4 n+2}=\frac{A_{1}\left(A_{2}-A_{3}\right)-A_{2}+A_{1}}{A_{2}-A_{1}}, \\
\lim _{n \rightarrow \infty} X_{4 n+1}=\frac{A_{1} A_{3}-A_{1}^{2}}{A_{2}-A_{1}}, \lim _{n \rightarrow \infty} X_{4 n-1}=\frac{A_{1} A_{2} A_{3}-A_{1}^{2} A_{2}}{A_{1} A_{2}-A_{1}^{2}} .
\end{gathered}
$$

4 The Case $\left\{A_{n}\right\}_{n=0}^{\infty}$ is periodic with period $2 k$.

In this section we will assume that $\left\{A_{n}\right\}_{n=0}^{\infty}$ is periodic with minimal period 2 k , such that $k=1,2,3, \ldots$ Now let
$P_{1}=A_{0} A_{2} A_{4} \cdots A_{2 k-4} A_{2 k-2}, \quad P_{2}=A_{1} A_{3} A_{5} \cdots A_{2 k-3} A_{2 k-1}, \quad$ and $M=\max \left\{A_{0}, A_{1}, A_{2}, \ldots, A_{2 k-1}\right\}$.
We will investigate the monotonic and periodic nature of the solutions of Eq.(2). In particular, we will discover the existence of multiple periodic solutions of different periods of Eq.(2).

4.1 Convergence to Zero.

Theorem 4.7 Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Suppose that $M \leq 1$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

Proof : The Proof is similar to the proof given in Lemma(2.1) and Lemma(3.4) and will be omitted.

Theorem 4.8 Let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Suppose that $P_{1} \leq 1$ and $P_{2} \leq 1$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=0
$$

Proof : The Proof is similar to the proof given in Lemma(3.5) and will be omitted.

4.2 Existence of Solutions with Minimal Period 2.

In this section we will assume that $\mathrm{M}>1$ and show that Eq.(2) has a unique solution with minimal period 2. We will assume that either

$$
A_{0}=A_{2}=A_{4}=\cdots=A_{2 k-2}>1 \text { or } A_{1}=A_{3}=A_{5}=\cdots=A_{2 k-1}>1
$$

Lemma 4.9 Eq.(2) has a positive solution with minimal period 2 if either
(i) $A_{0}=A_{2}=A_{4}=\cdots=A_{2 k-2}>1$ and $X_{0}=0$, or
(ii) $A_{1}=A_{3}=A_{5}=\cdots=A_{2 k-1}>1$ and $X_{-1}=0$.

Proof : Proof follows from Theorem(2.4) and lemma(3.5) and will be omitted.
Theorem 4.9 Suppose that $X_{-1}>0, X_{0}>0$, and if either $A_{0}=A_{2}=\cdots=A_{2 k-2}>1$ and $A_{0}^{k} \geq P_{135 \cdots(2 k-1)}$ or $A_{1}=A_{3}=\cdots=A_{2 k-1}>1$ and $A_{1}^{k} \geq P_{0246 \cdots(2 k-2)}$. Then every solution of Eq.(2) converges to a period 2 cycle.

Proof : From Theorem(1.1) recall that for all $n \geq 1$,

$$
0<X_{n}<M
$$

Now let

$$
F(u, v)=\frac{A v}{1+u+v}
$$

Then we see for $u, v>0$ that $f_{u}(u, v)<0$ and $f_{v}(u, v)>0$.
Now let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Then via Theorem(1.1), $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have finitely many eventually monotonic subsequences. Recall that when $M>1$, then Eq.(2) has two unique period 2 cycles. Therefore the result follows that the solution $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have two eventually monotonic subsequences $\left\{X_{2 n}\right\}_{n=0}^{\infty}$ and $\left\{X_{2 n+1}\right\}_{n=-1}^{\infty}$.

Remark 4 From lemma(4.9) and Theorem(4.9), we can show that
(i) $A_{0}=A_{2}=\cdots=A_{2 k-2}>1$ and $A_{0}^{k} \geq A_{1} A_{3} A_{5} \cdots A_{2 k-1}$, then

$$
\lim _{n \rightarrow \infty} X_{2 n}=0 \text { and } \lim _{n \rightarrow \infty} X_{2 n+1}=A_{0}-1
$$

(ii) $A_{1}=A_{3}=\cdots=A_{2 k-1}>1$ and $A_{1}^{k} \geq A_{0} A_{2} A_{4} \cdots A_{2 k-2}$, then

$$
\lim _{n \rightarrow \infty} X_{2 n+1}=0 \text { and } \lim _{n \rightarrow \infty} X_{2 n}=A_{1}-1
$$

4.3 Existence of Solutions with Minimal Period 4.

In this section we will show that Eq.(2) has a unique solution with minimal period 4. We will assume that 2 k is a multiple of 4 and that either
$A_{0}=A_{4}=\cdots=A_{2 k-4} \neq A_{2}=A_{6} \cdots=A_{2 k-2}$ and $A_{1}=A_{5}=\cdots=A_{2 k-3} \neq A_{3}=A_{7}=\cdots=A_{2 k-1}$.
Lemma 4.10 Eq.(2) has a solution with minimum period 4 if either:
(i) $X_{0}=0, A_{0}=A_{4}=\cdots=A_{2 k-4} \neq A_{2}=A_{6} \cdots=A_{2 k-2}$, and $P_{024 \cdots(2 k-2)}>1$, or
(ii) $X_{-1}=0, A_{1}=A_{5}=\cdots=A_{2 k-3} \neq A_{3}=A_{7}=\cdots=A_{2 k-1}$, and $P_{135 \cdots(2 k-1)}>1$.

Proof : Proof follows from lemma(3.6) and will be omitted.

4.4 Existence of a Positive Solution with Minimal Period 4.

In this section we will show that Eq.(2) has a unique positive solution with minimal period 4. We will assume that 2 k is a multiple of 4 and that

$$
\begin{aligned}
& A_{0}=A_{4}=\cdots=A_{2 k-4} \neq A_{2}=A_{6}=\cdots=A_{2 k-2} \text { or } A_{1}=A_{5}=\cdots=A_{2 k-3} \neq A_{3}=A_{7}=\cdots=A_{2 k-1} \\
& P_{024 \cdots(2 k-2)}=P_{135 \cdots(2 k-1)}>1, \quad X_{-1}>0, \quad \text { and } X_{0}>0
\end{aligned}
$$

Lemma 4.11 Eq.(2) has a positive solution with minimum period 4 if either:
(i) $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}<A_{2}, A_{1}>A_{3}, A_{1}>A_{2}$,
(ii) $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}>A_{2}, A_{1}<A_{3}, A_{3}>A_{0}$,
(iii) $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}>A_{2}, A_{1}>A_{3}, A_{0}>A_{1}$, or
(iv) $P_{02}=P_{13}>1, A_{0} \neq A_{2}, A_{1} \neq A_{3}, A_{0}<A_{2}, A_{1}<A_{3}, A_{2}>A_{3}$,

Proof : Proof follows from lemma(3.7) and will be omitted.
Theorem 4.10 Suppose that $X_{-1}>0, X_{0}>0$, either $A_{0} A_{2}>1$ or $A_{1} A_{3}>1$. Then every solution of Eq.(2) converges to a period 4 cycle.

Proof : From Theorem(1.1) recall that for all $n \geq 1$,

$$
0<X_{n}<M
$$

Now let

$$
F(u, v)=\frac{A v}{1+u+v}
$$

Then we see for $u, v>0$ that $f_{u}(u, v)<0$ and $f_{v}(u, v)>0$.
Now let $\left\{X_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq.(2). Then via Theorem(1.1), $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have finitely many eventually monotonic subsequences. Recall that when $P_{02}>1$ or $P_{13}>1$, then Eq.(2) has four unique period 4 cycles. Therefore the result follows that the solution $\left\{X_{n}\right\}_{n=-1}^{\infty}$ of Eq.(2) will have four eventually monotonic subsequences $\left\{X_{4 n}\right\}_{n=0}^{\infty},\left\{X_{4 n+1}\right\}_{n=-1}^{\infty},\left\{X_{4 n+2}\right\}_{n=-1}^{\infty}$, and $\left\{X_{4 n+3}\right\}_{n=-1}^{\infty}$.

Remark 5 Suppose $X_{-1}>0$ and $X_{0}>0$. Then Eq.(2) converges to a solution with minimal period 4 if (i)-(x) occurs in Remark 3.

4.5 Existence of Solutions with Minimal Period $2 l ; l \leq k$.

In this section we will assume that either:

$$
P_{1}>1 \text { and } P_{1}>P_{2} \text { or } P_{2}>1 \text { and } P_{2}>P_{1},
$$

and show that Eq.(2) has a unique solution with minimal period $2 l$.

Lemma 4.12 Eq.(2) has a solution with minimal period $2 l$ if
(i) $2 l$ divides $2 k$ and either
(ii) $P_{1}>1$ and $P_{1}>P_{2}$ or $P_{2}>1$ and $P_{2}>P_{1}$.

Proof : We will assume that 2l divides $2 k$ and consider the case where $X_{0}=0, P_{1}>1$, and $P_{1}>P_{2}$. The case where $X_{-1}=0, P_{2}>1$, and $P_{2}>P_{1}$ is similar and will be omitted.

Suppose that $X_{0}=0$, then by iterations and substitutions we get:

$$
\begin{aligned}
& X_{1}=\frac{A_{0} X_{-1}}{1+X_{0}+X_{-1}}=\frac{A_{0} X_{-1}}{1+X_{-1}} \quad X_{2}=\frac{A_{1} X_{0}}{1+X_{1}+X_{0}}=0, \quad X_{3}=\frac{A_{2} X_{1}}{1+X_{2}+X_{1}}=\frac{A_{2} X_{1}}{1+X_{1}} \\
& X_{4}=\frac{A_{3} X_{2}}{1+X_{3}+X_{2}}=0, \quad X_{5}=\frac{A_{4} X_{3}}{1+X_{4}+X_{3}}=\frac{A_{4} X_{3}}{1+X_{3}} \\
& \vdots \\
& X_{2 l-3}=\frac{A_{2 l-4} X_{2 l-5}}{1+X_{2 l-4}+X_{2 l-5}}=\frac{A_{2 l-4} X_{2 l-5}}{1+X_{2 l-5}}, \quad X_{2 l-2}=\frac{A_{2 l-3} X_{2 l-4}}{1+X_{2 l-3}+X_{2 l-4}}=0, \\
& X_{2 l-1}=\frac{A_{2 l-2} X_{2 l-3}}{1+X_{2 l-2}+X_{2 l-3}}=\frac{A_{2 l-2} X_{2 l-3}}{1+X_{2 l-3}}, \quad X_{2 l}=\frac{A_{2 l-1} X_{2 l-2}}{1+X_{2 l-1}+X_{2 l-2}}=0 .
\end{aligned}
$$

Now we set

$$
X_{2 l-1}=X_{-1}
$$

By substitution we get that the period $2 l$ cycle is:

$$
\begin{aligned}
& X_{-1}=\frac{P_{1}-1}{1+A_{0}+A_{0} A_{2}+A_{0} A_{2} A_{4}+\cdots+A_{0} A_{2} A_{4} \ldots A_{2 l-8} A_{2 l-6} A_{2 l-4}}, \quad X_{0}=0 \\
& X_{1}=\frac{P_{1}-1}{1+A_{2}+A_{2} A_{4}+A_{2} A_{4} A_{6}+\cdots+A_{2} A_{4} A_{6} \ldots A_{2 l-6} A_{2 l-4} A_{2 l-2}}, X_{2}=0 \\
& X_{3}=\frac{P_{1}-1}{1+A_{4}+A_{4} A_{6}+A_{4} A_{6} A_{8}+\cdots+A_{4} A_{6} A_{8} \ldots A_{2 l-4} A_{2 l-2} A_{0}}, X_{4}=0 \\
& X_{5}=\frac{P_{1}-1}{1+A_{6}+A_{6} A_{8}+A_{6} A_{8} A_{10}+\cdots+A_{6} A_{8} A_{10} \ldots A_{2 l-2} A_{0} A_{2}}, X_{6}=0 \\
& X_{7}=\frac{P_{1}-1}{1+A_{8}+A_{8} A_{10}+A_{8} A_{10} A_{12}+\cdots+A_{8} A_{10} A_{12} \ldots A_{0} A_{2} A_{4}}, X_{8}=0
\end{aligned}
$$

$$
\begin{aligned}
& X_{2 l-3}=\frac{P_{1}-1}{1+A_{2 l-2}+A_{2 l-2} A_{0}+A_{2 l-2} A_{0} A_{2}+\cdots+A_{2 l-2} A_{0} A_{2} \ldots A_{2 l-10} A_{2 l-8} A_{2 l-6}}, X_{2 l-2}=0, \\
& X_{2 l-1}=\frac{P_{1}-1}{1+A_{0}+A_{0} A_{2}+A_{0} A_{2} A_{4}+\cdots+A_{0} A_{2} A_{4} \ldots A_{2 l-8} A_{2 l-6} A_{2 l-4}} .
\end{aligned}
$$

Theorem 4.11 Suppose $X_{-1}>0$ and $X_{0}>0$. Then Eq.(2) converges to a solution with minimal period $2 l$ if either:

$$
P_{1}>1, P_{1} \geq A_{1} A_{3} A_{5} \cdots A_{2 k-1} \text { or } P_{2}>1, P_{2} \geq A_{0} A_{2} A_{4} \cdots A_{2 k-2}
$$

Conjecture 1 It is of paramount interest to determine the existence of positive periodic cycles and to what periodic cycles the solutions of Eq.(2) will converge to for $l \geq 3$.

Example 1 In this example we will let $k=12$ and thereby assume $\left\{A_{n}\right\}_{n=0}^{\infty}$ is periodic with minimal period $2(12)=24$. Hence when $l=1,2,3,4,6$ or 12 , there exist periodic solutions with minimal period 2,4,6,8,12, and 24 respectively.
$\mathbf{1}=1$: Solutions with Minimal Period 2: Let

$$
A_{0}=A_{2}=A_{4}=A_{6}=A_{8}=A_{10}=A_{12}=A_{14}=\cdots=A_{22}
$$

The Period 2 Cycle of Eq.(2) is then

$$
X_{-1}=A_{0}-1, \quad X_{0}=0, \quad X_{1}=A_{0}-1, \quad \text { and } X_{2}=0
$$

$\mathbf{l}=\mathbf{2}:$ Solutions with Minimal Period 4: Let

$$
A_{0}=A_{4}=A_{8}=A_{12}=\cdots=A_{20}, \text { and } A_{2}=A_{6}=A_{10}=A_{14}=\cdots=A_{22}
$$

The Period 4 Cycle of Eq.(2) is then

$$
X_{-1}=\frac{A_{2} A_{0}-1}{1+A_{0}}, \quad X_{0}=0, \quad X_{1}=\frac{A_{2} A_{0}-1}{1+A_{2}}, \quad X_{2}=0, \quad X_{3}=\frac{A_{2} A_{0}-1}{1+A_{0}}=X_{-1}, \quad X_{4}=0=X_{0}
$$

$\mathbf{l}=\mathbf{3}:$ Solutions with Minimal Period 6: Let

$$
A_{0}=A_{6}=A_{12}=A_{18}, \quad A_{2}=A_{8}=A_{14}=A_{20}, \text { and } A_{4}=A_{10}=A_{16}=A_{22}
$$

The Period 6 Cycle of Eq.(2) is then

$$
\begin{aligned}
& X_{-1}=\frac{A_{4} A_{2} A_{0}-1}{1+A_{0}+A_{2} A_{0}}, \quad X_{0}=0, \quad X_{1}=\frac{A_{4} A_{2} A_{0}-1}{1+A_{2}+A_{4} A_{2}}, \quad X_{2}=0 \\
& X_{3}=\frac{A_{4} A_{2} A_{0}-1}{1+A_{4}+A_{4} A_{0}}, \quad X_{4}=0, \quad X_{5}=\frac{A_{4} A_{2} A_{0}-1}{1+A_{0}+A_{2} A_{0}}=X_{-1}, \quad X_{6}=0=X_{0} \\
& X_{7}=\frac{A_{4} A_{2} A_{0}-1}{1+A_{2}+A_{4} A_{2}}=X_{1}, \quad X_{8}=0=X_{2}, \quad X_{9}=\frac{A_{4} A_{2} A_{0}-1}{1+A_{4}+A_{4} A_{0}}=X_{3}, \quad X_{10}=0=X_{4}
\end{aligned}
$$

$\mathbf{l}=\mathbf{6}:$ Solutions with Minimal Period 12: Let

$$
A_{0}=A_{12}, \quad A_{2}=A_{14}, A_{4}=A_{16}, A_{6}=A_{18}, A_{8}=A_{20}, \text { and } A_{10}=A_{22}
$$

The Period 12 Cycle of Eq.(2) is then

$$
\begin{aligned}
& X_{-1}=\frac{P_{0246810}-1}{1+A_{0}+A_{2} A_{0}+A_{4} A_{2} A_{0}+A_{6} A_{4} A_{2} A_{0}+A_{8} A_{6} A_{4} A_{2} A_{0}}, X_{0}=0 \\
& X_{1}=\frac{P_{0246810}-1}{1+A_{2}+A_{4} A_{2}+A_{6} A_{4} A_{2}+A_{8} A_{6} A_{4} A_{2}+A_{10} A_{8} A_{6} A_{4} A_{2}}, X_{2}=0 \\
& X_{3}=\frac{P_{0246810}-1}{1+A_{4}+A_{6} A_{4}+A_{8} A_{6} A_{4}+A_{10} A_{8} A_{6} A_{4}+A_{10} A_{8} A_{6} A_{4} A_{0}}, X_{4}=0 \\
& X_{5}=\frac{P_{0246810}-1}{1+A_{6}+A_{8} A_{6}+A_{10} A_{8} A_{6}+A_{10} A_{8} A_{6} A_{0}+A_{10} A_{8} A_{6} A_{2} A_{0}}, X_{6}=0 \\
& X_{7}=\frac{P_{0246810}-1}{1+A_{8}+A_{10} A_{8}+A_{10} A_{8} A_{0}+A_{10} A_{8} A_{2} A_{0}+A_{10} A_{8} A_{4} A_{2} A_{0}}, X_{8}=0 \\
& X_{9}=\frac{P_{0246810}-1}{1+A_{10}+A_{10} A_{0}+A_{10} A_{2} A_{0}+A_{8} A_{4} A_{2} A_{0}+A_{10} A_{6} A_{4} A_{2} A_{0}}, X_{10}=0 \\
& X_{11}=\frac{P_{0246810}-1}{1+A_{0}+A_{2} A_{0}+A_{4} A_{2} A_{0}+A_{6} A_{4} A_{2} A_{0}+A_{8} A_{6} A_{4} A_{2} A_{0}}, X_{12}=0
\end{aligned}
$$

5 Conclusion and Future Work.

It is of paramount interest to continue the investigation of the monotonicity and the periodicity of the poisitive solutions of Eq.(2) when $\left\{A_{n}\right\}_{n=0}^{\infty}$ is periodic with an even period and with an odd period and how the delay(s) of Eq.(2) and the period of $\left\{A_{n}\right\}$ will affect the periodic character of the solutions of Eq.(2). Furthermore, it is of importance to continue the study of the following difference equations:
(i)

$$
X_{n+1}=\frac{A_{n} X_{n-l}}{1+X_{n}+X_{n-l}}, \quad n=0,1,2, \ldots
$$

where $l=2,3,4, \ldots$
(ii)

$$
X_{n+1}=\frac{A_{n} X_{n-l}}{1+X_{n}+X_{n-1}+\cdots+X_{n-l}}, \quad n=0,1,2, \ldots
$$

where $l=2,3,4, \ldots$
(iii)

$$
X_{n+1}=\frac{A_{n} X_{n-l}}{1+B_{0} X_{n}+B_{1} X_{n-1}+\cdots+B_{l} X_{n-l}}, \quad n=0,1,2, \ldots
$$

where $l=2,3,4, \ldots$, and $\sum_{j=0}^{l} B_{j} \geq 0$.

References

[1] H. El-Metwally, E.A. Grove, and G. Ladas, A Global Convergence Result with Applications to Periodic Solutions J. Math. Anal. Appl., (2000), 161-170
[2] C.H. Gibbons, M.R.S. Kulenovic, and G. Ladas, On the Recursive Sequence

$$
x_{n+1}=\frac{\alpha+\beta x_{n-1}}{\gamma+x_{n}}
$$

Math. Sci. Res. Hot-Line 4 (2) (2000), 1-11.
[3] C.H. Gibbons, M.R.S. Kulenovic, and G. Ladas, On the Recursive Sequence

$$
y_{n+1}=\frac{p+q y_{n}+r y_{n-1}}{1+y_{n}}
$$

Proceedings of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile Jan. 3-7, 2000, Gordon and Breach Science Publishers.
[4] V.L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[5] W. Kosmala, M.R.S. Kulenovic, G. Ladas, and C.T. Teixera, On the Recursive Sequence

$$
y_{n+1}=\frac{p+y_{n-1}}{q y_{n}+y_{n-1}}
$$

J. Math. Anal. Appl. (to appear).
[6] M.R.S. Kulenovic and G. Ladas, On Period Two Solutions of

$$
x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}
$$

J. Diff. Equa. Appl. 6(2000), 641-646.
[7] M.R.S. Kulenovic, G. Ladas and N.R. Prokup, On the Recursive Sequence

$$
x_{n+1}=\frac{\alpha x_{n}+\beta x_{n-1}}{1+x_{n}}
$$

J. Diff. Equa. Appl. 6(2000), 563-576.
[8] M.R.S. Kulenovic, G. Ladas, and W.S. Sizer, On the Recursive Sequence

$$
x_{n+1}=\frac{\alpha x_{n}+\beta x_{n-1}}{\gamma x_{n}+\delta x_{n-1}}
$$

Math. Sci. Res. Hot-Line 2 (5) (1998), 1-16.
[9] G. E. Ladas JDEA12(2006),863-885.

