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Abstract

We investigate the monotonic and periodic character of the nonnegative solutions of the rational

difference equation
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1 Introduction.

First we consider the autonomous difference equation:
AXn—l
1+ Xn + anl

where A > 0 and the initial conditions, X_; and Xy, are non-negative real numbers. The following
properties were proved about Eq.(1) in [9]:

Xn-‘rl: ) n:0a1727"'7 (1)

1. If A < 1, then every positive solution converges to zero.

2. If A > 1, then either Eq.(1) has solutions with minimal period 2 or every positive solution of
Eq.(1) converges to a period 2 cycle.

It is our goal of this paper to study the long-term behavior of the positive solutions of the non-
autonomous difference equation

Aan,1
1+ Xn + Xn—l ’

where {A,}52, is a periodic sequence of positive real numbers with an even period and the initial
conditions, X_; and Xy, are non-negative real numbers. In particular, it is our goal to discover how the
period(s) and the rearrangement of terms of the sequence {4, }52, affect the periodic and monotonic
behavior of the solutions. In addition, it is our goal to discover the differences in the behavior of the
solutions of Eq.(2) compared to the behavior of solutions of Eq.(1).

Xpi1 = n=0,1,2,..., (2)

The following Theorem will show that every positive solution of Eq.(2) is bounded.

Theorem 1.1 Let {X,,}22 _; be a positive solution of Eq.(2) and let {A,}22 be a sequence of positive
real numbers with a finite period k = 2,3,4,... and let

M = mCLZC{Ao,Ah e ,Akfl}.

Then for alln >1 X, < M.
Proof : Observe that for allmn > 0,
A, <M.
Now notice that for allm > 0,
Aan71 Aanfl

Xpi1 = < = A, <M.
i 1+ Xn + Xn—l o Xn—l o

Hence the result follows.
O

The Following Theorem by E. Camouzis and G. Ladas will be used to prove convergence of solutions
of Eq.(2) to periodic cycles throughout this paper.

Theorem 1.2 Let I be a set of real numbers, and let
F:IxI—1T

be a function F(u,v), which decreases in u and increases in v. Then for every solution {X,}5° _; of
the equation
Xn+1 ZF(Xn,Xn_l); n:O,l,Z,...

the subsequences {X2,152 o and {Xaont1}52 1 of even and odd terms are eventually monotonic.

It is interesting to note that Theorem(1.2) has a straightforward extension to non-autonomous difference
equations.



2 The Case {A,}°, is periodic with period 2.

In this section we will assume that {4, }5°, is periodic with minimal period 2. Now let
M = max{Ag, A1}.
It is our goal to prove the following properties of Eq.(2).
1. If M <1, then every positive solution of Eq.(2) converges to zero.
2. If M > 1, then Eq.(2) has period 2 solutions or every positive solution of Eq.(2) converges to the

period 2 cycle.

2.1 Convergence to Zero.

In this section we will assume that M < 1 and show that every positive solution of Eq.(2) will converge
to zero. First we will prove very useful lemmas.

Lemma 2.1 Let {X,,}52_; be a positive solution of Eq.(2). Suppose that M < 1. Then

lim X, =0

n—oo

Proof : Notice that by iteration and inequalities, we get

_ _AoX ___AgX 2 _ _AgX 3
X = TFXoFr X7 < A()X,l, X3 = m < ApX; < AOXfl, X5 = ﬁ < ApX3 < AOX,h...

Then it follows by induction that for all n >0,

Xopt1 < Ag“X,l and we see that lim Xo,11 = 0. (3)

Similarly, we show that for all n >1,

Xop < A1 X and thus lim X5, =0 . (4)
n—oo

Hence the result follows via (3) and (4). O
Lemma 2.2 Let {X,}52 _; be a positive solution of Eq.(2). Suppose that M = 1. Then

lim X, =0

n—oo

Proof : First we will consider the case where Ag = 1 and Ay <1. The case where A1=1 and Ag <1
is stmilar and will be omitted. Similarly as in Lemma(2.1), it follows by computation, iterations, and
induction that for all n > 1,

Xon < A7Xo and hence lim X, =0.

n—oo

Also by computation, iterations, and induction it follows that for all n > 0,
X2n+1 < Xopo1 < ... < X3 < X1 <X 3.

Then there exists Lo > 0 such that
lim X2n+1 = Lo.

n—oo



It suffices to show that Lo = 0. Notice that using the properties of limits and iterations we get:

lim X — lim AQnXQn—l _ AOLO _
n—oo M T e 14+ X + Xon1 140+ Lo

0-

Hence we see that

Lo=Ap—1=0.

O
Theorem 2.3 Let {X,}52_; be a positive solution of Eq.(2). Suppose that M < 1. Then
Tim X, =0.
Proof : The proof follows from Lemma(2.1) and Lemma(2.2). O

2.2 Existence of Solutions with minimal period 2.

In this section we will assume that M > 1 and show the existence of two unique solutions with minimal
period 2.

Lemma 2.3 FEq.(2) has a solution with minimal period 2 if and only if M > 1.

Proof : Let {X,}°2 ;| be a positive solution of Eq.(2). Via Theorem(2.1) we showed that when M <1
then lim,_,. X, = 0. Thus it suffices to consider the case where M > 1. Therefore we will assume that
X_1 # X, and we set X_1 = Xy and X9 = Xy. By substitutions and iterations we get

. AoX _ _ A1 Xo _ A1 Xo _
X1 = I+Xo+X—_1 X, Xo= I+X1+Xo  1+X_1+Xo Xoy-- s

which gives us
A0=1+X0+X_1 or A1=1—|—X0+X_1. (5)

From (5) we get one of the following conditions
Xo = (AO - 1) —X_1 or X_1 = (A1 - 1) —Xo.

Now we consider the following two cases:

Case 1 : First suppose that M = Ay > 1. Then we get
X() = (A() — ].) — Xfl.

Now observe that by iteration, it follows that

AgX_4 Ao X4 ApX
X1 = = = = X—17
1+ X0+ X 1 1+ (A—1-X_1)+X 4 Ay
A1 X A1 X A1 X A1 X
X, 1X0 1X0 1X0 _AXo v

TI11X 4+ Xo 1+X 14X 14X +(A—1-X) A

Note that X9 = X provided that Xo= 0 as A1 # Ay. Hence when Ay > 1, then the unique period
2 cycle is
XOZO and X_1:A0—1.



Case 2 : Now suppose that M = Ay > 1. Then we have
X_1=(4; -1) — X,.
Similarly as in Case(1), we get the following unique period 2 cycle
X 1=0and Xog=A; - 1. O

Theorem 2.4 Suppose that X_1 >0, Xg > 0, and M > 1. Then every solution of Eq.(2) converges to
a period 2 cycle.

Proof : First recall that for alln > 1,

0< X, <M.
Now let 4
v

F = —

(u,v) T—

Then we see for u,v > 0 that fy(u,v) <0 and f,(u,v) > 0.

Now let {X,,}22_, be a positive solution of Eq.(2). Then via Theorem(1.1), {X,}5> 1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when M > 1, then Eq.(2) has two
unique period 2 cycles. Therefore the result follows that the solution {X,,}22 _; of Eq.(2) will have two
eventually monotonic subsequences {Xan o2y and {Xon+1}52 4. O

Remark 1 From Theorem(4.10) and lemma(2.3), we can show that

(i) If M = Ap > 1, then
lim Xgn =0and lim X2n+1 = AO — 1.

n—oo

(ii) f M = A; > 1, then
lim X2n+1 =0 and lim X2n+2 = A1 —1.

3 The Case {A,}°, is periodic with period 4.
In this section we will assume that {4, }72, is periodic with minimal period 4. Now let
M= maX{Ao,Al,AQ,A3}7 P02 == AOA2 and P13 = A1A3.

3.1 Convergence to Zero when M < 1.

In this section we will assume that M < 1. We will show that every positive solution of Eq.(2) will
converge to zero.

Lemma 3.4 Let {X,}52_, be a positive solution of Eq.(2). Suppose that M < 1. Then

lim X, =0.

n—oo

Proof : The case when M < 1 is similar to the proof in Lemma(2.1) and will be omitted. Thus we will
consider the case when M = 1; in particular, when Ay = 1, A1 < 1, Ay = 1, and A3 = 1. All other
cases are similar and will be omitted. As in lemma(2.1), by computations and inequalities, it follows by
induction that for allm > 1,

Xyn < A X and Xyn 10 < AT X,



from which we get
lim X4, =0 and lim X4,40 =0.
Similarly we show that it follows by induction that for all n > 0,
Xai>Xi1>...>Xop1 > X2n+1.
Then there exists Lo > 0 such that
lim X2n+1 = LQ.
n—oo

It now suffices to show that Ly = 0. Notice that using the properties of limits of Eq.(2) we get:
A0X2n71 140‘[’2

lim X5,411 = lim = = Lo.
oo I T 0 Soo T4 Xon + Xon1 140+ Lo ?
Hence we see that
L2 = AO —1= 0,
from which the result follows. a

3.2 Convergence to Zero when AyA; <1 and A; A3 < 1.

In this section we will assume that M > 1, AgAs <1, and A; A5 < 1. We will show that every positive
solution of Eq.(2) will converge to zero.

Lemma 3.5 Let {X,,}32 _; be a positive solution of Eq.(2). Suppose that AgAs < 1 and A1As < 1.
Then
lim X,, =0.

n—oo

Proof : Observe by iteration and inequalities, we get:

Aonl A2X1
Xi=———-—, = <A X < (AAp))X_1 < X_q,
1 1+ X0+ X, 3 11X+ X 2 X1 < (A240)X_; < 1
AOX3 A2X5
= ————— <A X3 < (A4 X1 <Xy, Xo=—— T — < AX5 < (A240)X3 < X3,....
5 14 X, + X 0X3 < (A240) X1 < Xy 7 11 X+ X- 2 X5 < (A240)X3 < X3

So we see that for allm > 0,
Xiyng3 < Xgn—1 < ... X7 < X3 < X1 and Xynys < Xgnt1 < ... < Xg < X5 < Xj.
So there exists L1 > 0 and Lz > 0 such that
nlLIIOlO Xynt+1 =Ly and nlLH;O Xynts = Ls.
Similarly as AsA; <1 we see that
Xynga < Xgpn < ... Xg < Xy < Xo and Xgpte < Xgnio < ... < X0 < Xg < Xo.
So there exists Ly > 0 and Ly > 0 such that
lim X4, = L4 and nlgr;o Xynto = Lo.

n—oo

It suffices to show that
Ly=Ly=Ls=Ly=0.



By iterations and properties of limits we get:

A0L3 A1L4 A2L1 A3L2

VI Iat Ly P T4 Li+ Ly P T A4 Let L YT AfIstly

Now we will consider two cases:

Case 1 : Suppose that AgAs = 1. Then notice that by iterations and inequalities
ALy A Ao L3 Ls

Lipys = —21 = - .
R T I S N E R A TV Iy N

So we see that
Ly< ——3  andhence L + L3 = 0.
P =1+ Li+ Ls s
Now observe that
AOL3 A1L4

= — - = dL: == U.
15 Lo+ Ls 0 an 2 0

L S S
! 1+ L.+ L,

Hence the result follows.
Case 2 : Suppose that AgAs < 1. Note that in Case 1 we saw that
X3 < [A()AQ]X,1 and X7 < [A0A2]2X,1.

Then it follows that
lim X4n+3 = 0.

Similarly we show that
lim X4n+1 =0.

Furthermore, as we know that A1As <1, then

ALy ALy ARin) (A1 A3]Ls o AL, (AL,

:1+L1+L4_1+L4_1+1+ﬁ7ﬁ2@ T 14+ Lt Lot A3y ~ 14+ L1+ Ly 1+1Is

Ly

If A1 Az < 1, then the result follows that

lim X4n = lim X4n+2 =0.
n— oo n—oo

If A1 A3 =1, then it follows that

1+ Ly =1 and thus Ly = 0.

3.3 Existence of Solutions with Minimal Period 2.

In this section we will assume that M > 1 and show that Eq.(2) has 2 unique solutions with minimal
period 2. We will assume that either

Ag=As >1or Ay = A3 > 1.



Lemma 3.6 Eq.(2) has a positive solution with minimal period 2 if either Ag = Ay > 1 or Ay = A3 > 1.

Proof : Let {X,}52_, be a positive solution of Eq.(2). Via Lemma(3.4) we showed that when M <1,

lim X, =0.

n—00

Thus it suffices to consider the case when M > 1. Similarly as in Lemma(2.8) we set
X3=X1 =X and X4, = X5 = Xy,
from which we get
Ay=1+Xg+X_1=A45 or A1 =1+ Xo+X_1 = As. (6)
From (6) and we see that either Ay = Ay or A1 = As, and we get one of the following conditions
Xo=(Ag—1)—X_1 or X_1=(A1—-1)— X,.
Now we consider the following two cases:
Case 1 : First suppose that M = Ag = Ay > 1. Then we get
Xo=(4p—-1)—X_1.
Now observe that by iteration, it follows that

_ A()X_l _ A()X_l o A()X_1
T+ Xo+ X, 14+(A-1-X_)+X1 A

X1 =X,

A Xy A1 Xy A1 Xy A1 Xy

TI+ X1+ Xo 14X +Xo I1+X +(A-1-X_1) A

2 = Xo.

Note that Xy = X provided that Xqg= 0 as A1 # Ag. Then we proceed with the next two itera-

tions and we get:

X A X4 - AgX_1 _ AgX - X
3_1+X2+X1_1+(A0—1—X71)+X71_1+(A0—1—X,1)+X,1_ b
X, - AzXy Az Xo _ Az Xo ~ A3Xp _x
TTI4 X5+ Xy 14X 14X 14X +(A-1-X,) A U

Note that Ay = As in order for the equalities to hold and that Xy = Xo = X provided Xo =0 as
As # Ag. Hence when Ay = As > 1, then the unique period 2 cycle is

Xo=0and X_1=A40—1.
Case 2 : Now suppose that M = Ay = A3 > 1. Then we have
X_1=(41-1)—X,.
Similarly as in Case(1), we get the following unique period 2 cycle
X 1=0and Xog=A; — 1.

Note: This is identically the same period 2 cycle as in Theorem(2.3) of Section(2.2). O



Theorem 3.5 Suppose that X_1 > 0, Xo > 0, and if either Ag = Ay > 1 and A3 > A1Az or
Ap = A3 > 1 and A? > AgAs. Then every solution of Eq.(2) converges to a period 2 cycle.

Proof : From Theorem(1.1) recall that for alln > 1,

0< X, <M.
Now let A
F(u,v) = A
l+u+v

Then we see for u,v > 0 that f,(u,v) <0 and f,(u,v) > 0.

Now let {X,,}°2 _; be a positive solution of Eq.(2). Then via Theorem(1.1), {X,}52 1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when M > 1, then Eq.(2) has two
unique period 2 cycles. Therefore the result follows that the solution {X,}22 _; of Eq.(2) will have two
eventually monotonic subsequences {Xan 52 and {Xon+1}152 4. O

Remark 2 From Theorem(4.10) and lemma(4.9), we can show that
(1) Ay = Ay >1 and A% > A1A3, then

lim Xgn =0 and lim X2n+1 = AO — 1.

(11) A = A3 > 1 and A% > A()AQ, then

lim X2n+1 =0 and lim Xgn = Al — 1.
n—oo

3.4 Existence of Solutions with Minimal Period 4.

In this section we will show that Eq.(2) has a unique solution with minimal period 4. We will assume
that
AO 7é A2 and A1 75 Ag.

Lemma 3.7 Eq.(2) has a solution with minimum period 4 if either Ag # As and Poa > 1 or Ay # As,
and Py3 > 1.

Proof : Let {X,}>2 ;| be a positive solution of Eq.(2) such that Ay # As and Pya > 1. The case
where Ay # As and Pi3 > 1 is similar and will be omitted. Observe that

A()Xfl A()Xfl AIXO
X, = = Xy = 20—,
I+ Xo+ X1 1+X, 1+ X1 + Xo
A X A X Az X AsX.
X3: 241 o 241 4 3A2 o 32 —0... ..

I+ X+ X1 14X VT I4X3+X, 1+X;3

Now we set

X3 =X_1.
Then observe that A x
. = A X1 _ E e _ Az Ag X _1 _x
T X L oot T+ X+ ApX -



This then implies that
AsAg =1+ X1+ AgX 1 =1+ X_1(1+ Ao).

From the equality above, we get

_ AQAO -1
T 1+ A4
Therefore proceeding with the substitutions we get
o AoXoy A AR A Ag(AsAo—1) _ Asdp -1
1 1+X_, 1+[%&;1] 1+ Ap+ A2A40—1 Ao(1+ Ag) 1+ Ay

Hence we see that the unique period 4 cycle is

_ AAp—1 _ _ AyAp—1 _
71_?1407 Xo=0, X1=—F-——, X2=0.

Note: In this case if Ag = Asg, then the period j cycle becomes a period 2 cycle.
Similarly, the unique period 4 cycle when X_1 =0, A; # As, and P13 > 1, is

AzA; —1 AzA; —1
X 1=0, Xo=——, X;1=0, Xo=———
1 ) 0 1 ¥ A1 ) 1 ) 2 1 + Ag,
Note: In this case if Ay = As > 1 then the period 4 cycle becomes a period 2 cycle. a

3.5 Existence of a Positive Solution with Minimal Period 4.

In this section we will show that Eq.(2) has a unique positive solution with minimal period 4. We will

assume that
Ap 75 As, Ay #* A3, Ppo=Pi3>1, X_1>0, and Xg > 0.

Lemma 3.8 Eq.(2) has a positive solution with minimum period 4 if either:
(i) Poo = P13 > 1, Ag # Ag, A1 # A3, Ag < Ag, Ay > Az, A1 > As,
(1i) Pya = P13 > 1, Ag # Ag, Ay # Az, Ag > As, Ay < Az, A3 > Ay,
(i1i) Poo = P13 > 1, Ag # Ao, Ay # A3, Ag > Ao, A1 > A3, Ay > Ay, or
(iv) Poo = P13 > 1, Ag # As, A1 # A3, Ag < Aa, Ay < Az, Ay > As,

Proof : Let {X,}>2 ;| be a positive solution of Eq.(2) such that Pyo = P13 > 1,Aq # Az, A1 #
A3, Ag < Ag, Ay > Az, and Ay > As. The other cases are similar and will be omitted. Observe that
when X_1 = X4, we get

Ao X1
Xij=——FF—=X 4.
YT X0+ X !
This implies that
Ag =14+ Xo+ X_1, (7)

and hence from (7) and substitutions we get

10



A1X0 N A1XQ

X, = = ,
T+ Xo+ X1 A
A2X1 AQX,l
X = = :X7 s
Tl X+ X0 14 A X '
A A1 Xo
X, AsXo A3 Xo s[ 7] _ X,

- 1+X3+X2 - 1+X_ 1+ X5 - 1+X*1+[A114f0}

Then we see from (9) and (10) that

A1 Xy A Az A1 X,
X_ d =1+X_
A + 1 an Ay + 1+ A

Therefore from (11) we get the following relation,

Ay =1+

AgAy = Ag + A1 X+ AgX_1 = A1 As.
It is clear from (12) that

AOA2 = A1A3 and AOA2 — A() — A()X_1 = AQ[AQ - (1 + X_l)] = AlXo.

Now from (7), we substitute
1+ X 1 =4 — Xo,

into (13) and we get

AgAy — A2 4+ AgXo = A1 Xy and therefore AgAy — A2 = Xo(A; — Ay).
Hence we see that
X, = AgAs — Ag.
A — Ap
Therefore the unique positive period 4 cycle we get with the following pattern:
Ag(A — As) — A1 + A _ ApAs — A?

X71 - A1 — AO ’ XO N Al - AO

Ao(A1 — A) — Ay + Ay | AgAL A, — AZA,

X = X, —
! A, — Ay ’ 2 AgA, — A2

We will also get the above unique period 4 cycle when Pys = Pig > 1, Ag # Ag, A1 # A3, Ag > As, A1 <
Az, Az > Ag. Similarly when Pyo = Pz > 1, Ag # As, Ay # Az, Ag > Ag, Ay > A3z, Ag > A1, or when
Pyo = P13 > 1, Ag # Ag, Ay # Az, Ag < Ag, Ay < As, As > Az, we get another unique positive period 4

cycle with the following pattern:

. A1 Ay A5 — A%AQ Al(AQ — A3) — Ay + Ay

Xo="ga,—ae - Y= Ay — Ay ’
A Az — A3 A(Ay - As) - Ay + Ay
ey Ao — A '

11



Theorem 3.6 Suppose that X_1 >0, Xg >0, Ag # Az, A1 # Az, and either AgAy > 1 or A Az > 1.
Then every solution of Eq.(2) converges to a period 4 cycle.

Proof : From Theorem(1.1) recall that for alln > 1,

0< X, <M.
Now let A
F(u,v) = S
l+u+v

Then we see for u,v > 0 that f,(u,v) <0 and f,(u,v) > 0.

Now let {X,,}°2 _; be a positive solution of Eq.(2). Then via Theorem(1.1), {X,}52 1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when Pys > 1 or Pi3 > 1, then
Eq.(2) has four unique period 4 cycles. Therefore the result follows that the solution {X,}32_; of
FEq.(2) will have four eventually monotonic subsequences {Xan }o o { Xan+1}5> 1, {Xan+2}22_4, and

{Xans3tnZ_q- =
Remark 3 Suppose X_1 > 0 and Xy > 0. Then Eq.(2) converges to a solution with minimal period /
if either:
(Z) Ay 7é AQ, Pys > 1, and AgAs > A1A3, or ionAQ = A1A3, Ay > Ag, Al < Ag, and As < Ao, or
Zf ApgAy = A1 A3z, Ag > Ay, Ay > A3z, and Ay < Ay, then
AyAp —1 . AsAy —1
—_ d lim X ==
1+A0’an nLH;O 4n+1 1+ A,
(ZZ) Ay §é Ag, Pis > 1, and A1A3 > AoAQ, or ’LfAQAQ = A1A3, AO < AQ, Al > Ag, and Ay < AQ, or
’Lf AOA2 = A1A3, AO < AQ, Al > Ag, and Ay > Ay then

lim X4n = lim X4n+2 = 0, lim X4n—1 =
n— 00 n— o0 n— o0

. . . AsA; —1 . AsA; —1
Jm i = lim Xins =0, lim Xop = S50, ondlim Xz = 700
(’LZZ) IonAg = A1As, Ag < A, A1 > A3z, and A1 > As or ionAQ = A1A3, Ay < Ay, A1 < Az, and
A3 > AQ, then
. . Ag(A1 — As) — A1+ A
i ooy = Jim Yoy = SURH AR
. AgAy — AT . ApA Ay — AFA
lim Xy, = 2222720 iy x, =
o, 4 AL — Ay 7 neg T Ant? AgAy — A2
(Z’U) IfA()AQ = A1A3, Ay > Ag, Ay > A3, and Ag > Ay or ZonAQ = A1A3, Ap < AQ, Ay < Az, and
Ay > Ag, then

Ai(As — As) — As + Ay

lim X4n = lim X4n+2 =
n—oo

n—oo A2 — Al ’
. AyAy — A2 Ay Ay As — A2A,
Hm Xpq = —2 21 lim Xy g =
e T e A Ay — A2

4 The Case {A,}°, is periodic with period 2k.

In this section we will assume that {4,,}22 ; is periodic with minimal period 2k, such that k =1,2,3,....
Now let

Py = AgAs Ay - Aoj_aAog—9, Po=A1A3A5--- Aop_3Aok_1, and M = max{Ay, A1, As,..., Ask_1}.

We will investigate the monotonic and periodic nature of the solutions of Eq.(2). In particular, we will
discover the existence of multiple periodic solutions of different periods of Eq.(2).

12



4.1 Convergence to Zero.

Theorem 4.7 Let {X,}52_, be a positive solution of Eq.(2). Suppose that M < 1. Then
lim X,, =0.

n—oo

Proof : The Proof is similar to the proof given in Lemma(2.1) and Lemma(3.4) and will be omitted.
O

Theorem 4.8 Let {X,}52 _; be a positive solution of Eq.(2). Suppose that P, <1 and Py <1. Then

lim X,, =0.
Proof : The Proof is similar to the proof given in Lemma(3.5) and will be omitted. o

4.2 Existence of Solutions with Minimal Period 2.

In this section we will assume that M > 1 and show that Eq.(2) has a unique solution with minimal
period 2. We will assume that either

Ag=Ay=A4=- =Ag o>lor Ay =A3=A5=--- = Agp_1 > 1.
Lemma 4.9 FEq.(2) has a positive solution with minimal period 2 if either
(i) Apg=As=As=--=As_2>1 and Xo =0, or
(i) Ay=A3=As5=---=Ay,_1>1and X_; =0.
Proof : Proof follows from Theorem(2.4) and lemma(3.5) and will be omitted. O
Theorem 4.9 Suppose that X_1 > 0, Xo > 0, and if either Ag = Ay = -+ = Agk_o > 1 and
Af > Pias...ok—1) or Ay = A3 = -+ = Ag_1 > 1 and Ak > Poosg...c2k—2)- Then every solution of

Eq.(2) converges to a period 2 cycle.

Proof : From Theorem(1.1) recall that for allm > 1,

0< X, <M.
Now let 4
v

F =

(u,v) T—

Then we see for u,v > 0 that f,(u,v) <0 and f,(u,v) > 0.

Now let {X,,}22_1 be a positive solution of Eq.(2). Then via Theorem(1.1), {X,}5>_; of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when M > 1, then Eq.(2) has two
unique period 2 cycles. Therefore the result follows that the solution {X,,}22 _; of Eq.(2) will have two
eventually monotonic subsequences {Xan s> and {Xon+1}52 4. O

Remark 4 From lemma(4.9) and Theorem(4.9), we can show that
(i) Ag= Ay == Ag_o > 1 and AE > Aj A3A5--- Ay, then
lim X5, =0and lim Xg,41 = A4 — 1.
n—oo n—oo
(i) Ay =A3=---=Ag,_1 >1and AY > AgAyA,--- Ay, then

lim X5,41 =0and lim Xo, = A; — 1.

n—oo
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4.3 Existence of Solutions with Minimal Period 4.

In this section we will show that Eq.(2) has a unique solution with minimal period 4. We will assume
that 2k is a multiple of 4 and that either

Ay=As = =Agpa#As=A¢-- - =Agp oand Ay = A5 = - =Agp_g # A3 =A7 = = Agp_1.

Lemma 4.10 Eq.(2) has a solution with minimum period 4 if either:

(i) Xo =0, Ag=Ay = =Aop 4 # Ay = Ag--- = A2 , and Pogy...2k—2) > 1, or
(ii)) X 1=0, Ay =As=---=Aop 3 # A3 = A7 = --- = Agy_1, and Pig5...26-1) > 1.
Proof : Proof follows from lemma(3.6) and will be omitted. O

4.4 Existence of a Positive Solution with Minimal Period 4.

In this section we will show that Eq.(2) has a unique positive solution with minimal period 4. We will
assume that 2k is a multiple of 4 and that

Ay=Ay = =AppyFAry=Ag=---=Agpo0or A =A5= - =Ay 3FA3=A7=---=Agp_1,

Pooa...2k—2) = Pi3s...2k—1) > 1, X1 >0, and Xo > 0.
Lemma 4.11 Eq.(2) has a positive solution with minimum period 4 if either:
(i) Poo = P13 > 1, Ag # Ao, Ay # Az, Ag < Ao, Ay > Az, Ay > Ay,
(i) Poo = P13 > 1, Ag # Aa, Ay # Az, Ag > As, A1 < Az, A3 > Ao,
(iii) Poo = P13 > 1, Ag # As, Ay # Az, Ag > Ag, A1 > A3, Ag > Ay, or
(iv) Poa = P1g > 1, Ag # Ao, A1 # A3, Ag < Ay, Ay < Az, Ay > As,
Proof : Proof follows from lemma(3.7) and will be omitted. O

Theorem 4.10 Suppose that X_1 > 0, Xg > 0, either AgAs > 1 or AyAs > 1. Then every solution of
Eq.(2) converges to a period 4 cycle.

Proof : From Theorem(1.1) recall that for alln > 1,

0< X, <M.
Now let 4
F(u,v) = S
l1+u+v

Then we see for u,v > 0 that fy(u,v) <0 and f,(u,v) > 0.

Now let {X,,}22_, be a positive solution of Eq.(2). Then via Theorem(1.1), {X,}52 1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when Py > 1 or Pis > 1, then
Eq.(2) has four unique period j cycles. Therefore the result follows that the solution {X,}32 _; of
Eq.(2) will have four eventually monotonic subsequences {Xun 1o 0, { Xan+1}52 1, {Xan+2}22_1, and
{X4n+3}nooz—1' O

Remark 5 Suppose X_1 > 0 and Xy > 0. Then Eq.(2) converges to a solution with minimal period /
if (i)-(x) occurs in Remark 3.
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4.5 Existence of Solutions with Minimal Period 2/; [ < k.

In this section we will assume that either:
Pr>1and PL > P, or P,>1 and P, > Py,

and show that Eq.(2) has a unique solution with minimal period 2l.

Lemma 4.12 Eq.(2) has a solution with minimal period 21 if
(i) 2l divides 2k and either
(ii) P >1 and Py > P or Py > 1 and P, > P;.

Proof : We will assume that 21 divides 2k and consider the case where Xo =0, P, > 1, and Py > Ps.
The case where X_1 =0, P, > 1, and P, > Py is similar and will be omitted.

Suppose that Xog = 0, then by iterations and substitutions we get:

X, = Ao X 1 _ Ao X 1 X, — A1 Xy _ _ Ao X, _ As X,
PTIEXor X, 14X, P Xx 4 X, O P Xa+x, 1+ Xy
Az X A X Ay X
X, — X2 o x, = Xy AuXs
1+ X3+ Xo 1+ X4+ X3 1+ X5
Ay Xo s Ay aXo s Ay 3Xopq
Xoj 3= = , Xoo= =0,
14+ Xo—a+ Xoi—5 1+ Xo 5 1+ X9 3+ Xo4
Xy = A2 X213 _ A2 X913 X1 Ay 1 X212 _

1+ Xoi—o0+ X913 1+ Xo3 ' 1+ Xopg + Xop o

Now we set
Xoj1 = X_1.

By substitution we get that the period 21 cycle is:

X_, = Al Xo=0
TN T+ Ag + AgAs + AgAs Ayt -+ AgAsAy . Ag Ay gAy_y T
P -1
X, = , Xo =0,
Tl Ay + AgAy 4 AgAgAg + -+ AgAgAg .. Ay Ay sAy o 0
P —1
X = b) X = 0’
3 1+ Ay + AyAg + AgAgAg + - -+ Ay AgAg ... Agi_4 Ao 2 Ay 4
P -1
X = Y X = 0?
T 1+ Ag 4 AgAs + AgAsAig + - + AgAgArg ... Ag_gAgAy’ T °
P—-1
X7 = ' X =0,

1+ Ag + AgAig + AgAigAia + - + AgA1gArz ... AgAs Ay’

15



P -1
! , Xoj—2 =0,

X _ =

AT + Agi_o+ Ay 2Ag + A2 AgAs + - + Agy_0AgAs ... Ay_10A2-8A2 ¢
[ P -1

VT T4 Ag + AgAg + AgAg Ay + -+ AgAgAy .. Ay Ay Ay 4

d

Theorem 4.11 Suppose X_1 > 0 and Xy > 0. Then Eq.(2) converges to a solution with minimal
period 21 if either:

Py >1,P > A1A3As - Agg—1 or Po > 1, P > AgAaAy -+ Agg—a.

Conjecture 1 It is of paramount interest to determine the existence of positive periodic cycles and to
what periodic cycles the solutions of Eq.(2) will converge to for 1 > 3.

Ezxzample 1 In this example we will let k = 12 and thereby assume {A,}52 is periodic with minimal
period 2(12) = 24. Hence when | = 1,2,3,4,6 or 12, there exist periodic solutions with minimal period

2,4,6,8,12, and 24 respectively.
1=1: Solutions with Minimal Period 2: Let
Ao =Ay=Ay=A6 = Ag = Ao = A1z = Ay = - = Apa.
The Period 2 Cycle of FEq.(2) is then
X 1=4,—-1, Xo=0, Xi1=A4,—1, and X5 =0.

1=2 : Solutions with Minimal Period 4: Let
A0:A4:A8:A12:"':A207 and A2:A6:A10:A14:"‘:A22~
The Period 4 Cycle of Eq.(2) is then

AxAg—1 AsAg—1 AyAg—1
X 1=—F X9=0, Xy =—-, Xo0=0, Xg=——=X_,, Xy =0=X,.
1 1+A0 ) 0 ) 1 1+A2 ) 2 ) 3 1+A0 1 4 0

1= 3: Solutions with Minimal Period 6: Let
Ag = Ag = A1g = Aig, Ay = Ag = A1y = Agg, and Ay = Ajg = Arg = Ao
The Period 6 Cycle of Eq.(2) is then

o AdAo =l oy o Addedo L

14+ Ag + AxAg 14+ Ag + AsAs

A Ay Ag — 1 Ay AsAg —1
_ A0 T 0 g, Xy = AR x X = 0= X,
ST A+ AgAy T 14 A+ Ar 4 b 0

AgAs Ay —1 AgAs Ay —1
= A0 Ty Xy = 0= Xy, Xo= 220070 X X0 =0=X,.
T+ Ay + A4A, ' ® 2 T+ A+ A4A ° 0 !
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1=6: Solutions with Minimal Period 12: Let
Ao = Ara, Ao = Ay, Ay = Asg, A = A1g, Ag = Agg, and Ayp = Aso.
The Period 12 Cycle of Eq.(2) is then

Y Poosesio — 1
TP T F Ag + AgAg + AyAsAg + AgAsAsAg + AgAgAsAg Ay’

X0:O7

Po24es1o — 1

X = b X - 07
VT 14 A+ AgAs + AgAgAg + AgAgAsAs + AlgAsAgAs Ay TP
Y. — Po2aesio — 1 X, —0
P T 14+ Ay + AgAy + AgAgAs + ArgAgAgAs + AgAsAgAsA,’ ’
_ Po246s10 — 1 B
X5 - ) X6 - 07
1+ Ag + AgAg + A1gAgAg + A1gAgAgAg + A1gAgAg A2 Ag
Y Po24es1o — 1 b
7T = 5 8 = Oa
Yo Po24es1o — 1 X0
T 14 Ajg + ArAg + AjpAsAg + AsAgAsAg + A1gAgAsAs Ay 0T
P -1
X1y 0246810 X1y — 0.

T 14 Ag + AgAg + Ay Ay Ay + AgA A Ay + AgAgA A Ay’

5 Conclusion and Future Work.

It is of paramount interest to continue the investigation of the monotonicity and the periodicity of the
poisitive solutions of Eq.(2) when {A,}52 is periodic with an even period and with an odd period and
how the delay(s) of Eq.(2) and the period of {A,} will affect the periodic character of the solutions of
Eq.(2). Furthermore, it is of importance to continue the study of the following difference equations:

(1) x
Xppg = ——=22L  n=0,1,2,...
+1 1+Xn+Xn—l n 07 5 4y

where | = 2,3,4,...

(ii)
Aanfl
Xny1 = , n=0,1,2,...
IR X X+ Xy

where | = 2,3,4,...

(iii)

Aan—l
1+ BoX, +B1 X1+ +BXn

where | = 2,34, ..., and Zé‘:o B; > 0.

Xpi1 = n=0,12...
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