
Monotonic and Periodic Character of solutions of the Rational

Difference Equation xn+1 = AnXn−1
1+Xn+Xn−1

Nicholas A. Battista and Michael A. Radin
Rochester Institute of Technology,

School of Mathematical and Sciences,
85 Lomb Memorial Drive, Rochester, New York 14623-5604, USA

February 23, 2009

Abstract

We investigate the monotonic and periodic character of the nonnegative solutions of the rational
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1 Introduction.

First we consider the autonomous difference equation:

Xn+1 =
AXn−1

1 +Xn +Xn−1
, n = 0, 1, 2, . . . , (1)

where A > 0 and the initial conditions, X−1 and X0, are non-negative real numbers. The following
properties were proved about Eq.(1) in [9]:

1. If A ≤ 1, then every positive solution converges to zero.

2. If A > 1, then either Eq.(1) has solutions with minimal period 2 or every positive solution of
Eq.(1) converges to a period 2 cycle.

It is our goal of this paper to study the long-term behavior of the positive solutions of the non-
autonomous difference equation

Xn+1 =
AnXn−1

1 +Xn +Xn−1
, n = 0, 1, 2, . . . , (2)

where {An}∞n=0 is a periodic sequence of positive real numbers with an even period and the initial
conditions, X−1 and X0, are non-negative real numbers. In particular, it is our goal to discover how the
period(s) and the rearrangement of terms of the sequence {An}∞n=0 affect the periodic and monotonic
behavior of the solutions. In addition, it is our goal to discover the differences in the behavior of the
solutions of Eq.(2) compared to the behavior of solutions of Eq.(1).

The following Theorem will show that every positive solution of Eq.(2) is bounded.

Theorem 1.1 Let {Xn}∞n=−1 be a positive solution of Eq.(2) and let {An}∞n=0 be a sequence of positive
real numbers with a finite period k = 2, 3, 4, . . . and let

M = max{A0, A1, . . . , Ak−1}.

Then for all n ≥ 1 Xn ≤M.
Proof : Observe that for all n ≥ 0,

An ≤M.

Now notice that for all n ≥ 0,

Xn+1 =
AnXn−1

1 +Xn +Xn−1
≤ AnXn−1

Xn−1
= An ≤M.

Hence the result follows.
2

The Following Theorem by E. Camouzis and G. Ladas will be used to prove convergence of solutions
of Eq.(2) to periodic cycles throughout this paper.

Theorem 1.2 Let I be a set of real numbers, and let

F : I × I → I

be a function F (u, v), which decreases in u and increases in v. Then for every solution {Xn}∞n=−1 of
the equation

Xn+1 = F (Xn, Xn−1); n = 0, 1, 2, . . .

the subsequences {X2n}∞n=0 and {X2n+1}∞n=−1 of even and odd terms are eventually monotonic.

It is interesting to note that Theorem(1.2) has a straightforward extension to non-autonomous difference
equations.
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2 The Case {An}∞n=0 is periodic with period 2.

In this section we will assume that {An}∞n=0 is periodic with minimal period 2. Now let

M = max {A0, A1} .

It is our goal to prove the following properties of Eq.(2).

1. If M ≤1, then every positive solution of Eq.(2) converges to zero.

2. If M > 1, then Eq.(2) has period 2 solutions or every positive solution of Eq.(2) converges to the
period 2 cycle.

2.1 Convergence to Zero.

In this section we will assume that M ≤ 1 and show that every positive solution of Eq.(2) will converge
to zero. First we will prove very useful lemmas.

Lemma 2.1 Let {Xn}∞n=−1 be a positive solution of Eq.(2). Suppose that M < 1. Then

lim
n→∞

Xn = 0

Proof : Notice that by iteration and inequalities, we get

X1 = A0X−1
1+X0+X−1

< A0X−1, X3 = A0X1
1+X2+X1

< A0X1 < A2
0X−1, X5 = A0X3

1+X4+X3
< A0X3 < A3

0X−1, . . .

Then it follows by induction that for all n ≥0,

X2n+1 < An+1
0 X−1 and we see that lim

n→∞
X2n+1 = 0. (3)

Similarly, we show that for all n ≥1,

X2n < An
1X0 and thus lim

n→∞
X2n = 0 . (4)

Hence the result follows via (3) and (4). 2

Lemma 2.2 Let {Xn}∞n=−1 be a positive solution of Eq.(2). Suppose that M = 1. Then

lim
n→∞

Xn = 0

Proof : First we will consider the case where A0 = 1 and A1 <1. The case where A1=1 and A0 <1
is similar and will be omitted. Similarly as in Lemma(2.1), it follows by computation, iterations, and
induction that for all n ≥ 1,

X2n < An
1X0 and hence lim

n→∞
X2n = 0.

Also by computation, iterations, and induction it follows that for all n ≥ 0,

X2n+1 < X2n−1 < . . . < X3 < X1 < X−1.

Then there exists LO ≥ 0 such that
lim

n→∞
X2n+1 = LO.
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It suffices to show that LO = 0. Notice that using the properties of limits and iterations we get:

lim
n→∞

X2n+1 = lim
n→∞

A2nX2n−1

1 +X2n +X2n−1
=

A0LO

1 + 0 + LO
= L0.

Hence we see that
LO = A0 − 1 = 0.

2

Theorem 2.3 Let {Xn}∞n=−1 be a positive solution of Eq.(2). Suppose that M ≤ 1. Then

lim
n→∞

Xn = 0.

Proof : The proof follows from Lemma(2.1) and Lemma(2.2). 2

2.2 Existence of Solutions with minimal period 2.

In this section we will assume that M > 1 and show the existence of two unique solutions with minimal
period 2.

Lemma 2.3 Eq.(2) has a solution with minimal period 2 if and only if M > 1.

Proof : Let {Xn}∞n=−1 be a positive solution of Eq.(2). Via Theorem(2.1) we showed that when M ≤ 1
then limn→∞Xn = 0. Thus it suffices to consider the case where M > 1. Therefore we will assume that
X−1 6= X0, and we set X−1 = X1 and X2 = X0. By substitutions and iterations we get

X1 = A0X−1
1+X0+X−1

= X−1, X2 = A1X0
1+X1+X0

= A1X0
1+X−1+X0

= X0, . . . ,

which gives us
A0 = 1 +X0 +X−1 or A1 = 1 +X0 +X−1. (5)

From (5) we get one of the following conditions

X0 = (A0 − 1)−X−1 or X−1 = (A1 − 1)−X0.

Now we consider the following two cases:

Case 1 : First suppose that M = A0 > 1. Then we get

X0 = (A0 − 1)−X−1.

Now observe that by iteration, it follows that

X1 =
A0X−1

1 +X0 +X−1
=

A0X−1

1 + (A0 − 1−X−1) +X−1
=
A0X−1

A0
= X−1,

X2 =
A1X0

1 +X1 +X0
=

A1X0

1 +X−1 +X0
=

A1X0

1 +X−1 + (A0 − 1−X−1)
=
A1X0

A0
= X0.

Note that X2 = X0 provided that X0= 0 as A1 6= A0. Hence when A0 > 1, then the unique period
2 cycle is

X0 = 0 and X−1 = A0 − 1.
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Case 2 : Now suppose that M = A1 > 1. Then we have

X−1 = (A1 − 1)−X0.

Similarly as in Case(1), we get the following unique period 2 cycle

X−1 = 0 and X0 = A1 − 1. 2

Theorem 2.4 Suppose that X−1 > 0, X0 > 0, and M > 1. Then every solution of Eq.(2) converges to
a period 2 cycle.

Proof : First recall that for all n ≥ 1,
0 < Xn < M.

Now let
F (u, v) =

Av

1 + u+ v
.

Then we see for u, v > 0 that fu(u, v) < 0 and fv(u, v) > 0.

Now let {Xn}∞n=−1 be a positive solution of Eq.(2). Then via Theorem(1.1), {Xn}∞n=−1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when M > 1, then Eq.(2) has two
unique period 2 cycles. Therefore the result follows that the solution {Xn}∞n=−1 of Eq.(2) will have two
eventually monotonic subsequences {X2n}∞n=0 and {X2n+1}∞n=−1. 2

Remark 1 From Theorem(4.10) and lemma(2.3), we can show that

(i) If M = A0 > 1, then
lim

n→∞
X2n = 0 and lim

n→∞
X2n+1 = A0 − 1.

(ii) If M = A1 > 1, then
lim

n→∞
X2n+1 = 0 and lim

n→∞
X2n+2 = A1 − 1.

3 The Case {An}∞n=0 is periodic with period 4.

In this section we will assume that {An}∞n=0 is periodic with minimal period 4. Now let

M = max {A0, A1, A2, A3} , P02 = A0A2 and P13 = A1A3.

3.1 Convergence to Zero when M ≤ 1.

In this section we will assume that M ≤ 1. We will show that every positive solution of Eq.(2) will
converge to zero.

Lemma 3.4 Let {Xn}∞n=−1 be a positive solution of Eq.(2). Suppose that M ≤ 1. Then

lim
n→∞

Xn = 0.

Proof : The case when M < 1 is similar to the proof in Lemma(2.1) and will be omitted. Thus we will
consider the case when M = 1; in particular, when A0 = 1, A1 < 1, A2 = 1, and A3 = 1. All other
cases are similar and will be omitted. As in lemma(2.1), by computations and inequalities, it follows by
induction that for all n ≥ 1,

X4n < An
1X0 and X4n+2 < An+1

1 X0,
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from which we get
lim

n→∞
X4n = 0 and lim

n→∞
X4n+2 = 0.

Similarly we show that it follows by induction that for all n ≥ 0,

X−1 > X1 > . . . > X2n−1 > X2n+1.

Then there exists L2 ≥ 0 such that
lim

n→∞
X2n+1 = L2.

It now suffices to show that L2 = 0. Notice that using the properties of limits of Eq.(2) we get:

lim
n→∞

X2n+1 = lim
n→∞

A0X2n−1

1 +X2n +X2n−1
=

A0L2

1 + 0 + L2
= L2.

Hence we see that
L2 = A0 − 1 = 0,

from which the result follows. 2

3.2 Convergence to Zero when A0A2 ≤ 1 and A1A3 ≤ 1.

In this section we will assume that M > 1, A0A2 ≤ 1, and A1A3 ≤ 1. We will show that every positive
solution of Eq.(2) will converge to zero.

Lemma 3.5 Let {Xn}∞n=−1 be a positive solution of Eq.(2). Suppose that A0A2 ≤ 1 and A1A3 ≤ 1.
Then

lim
n→∞

Xn = 0.

Proof : Observe by iteration and inequalities, we get:

X1 =
A0X−1

1 +X0 +X−1
, X3 =

A2X1

1 +X2 +X1
< A2X1 < (A2A0)X−1 ≤ X−1,

X5 =
A0X3

1 +X4 +X3
< A0X3 < (A2A0)X1 ≤ X1, X7 =

A2X5

1 +X6 +X5
< A2X5 < (A2A0)X3 ≤ X3, . . . .

So we see that for all n ≥ 0,

X4n+3 < X4n−1 < . . .X7 < X3 < X−1 and X4n+5 < X4n+1 < . . . < X9 < X5 < X1.

So there exists L1 ≥ 0 and L3 ≥ 0 such that

lim
n→∞

X4n+1 = L1 and lim
n→∞

X4n+3 = L3.

Similarly as A3A1 ≤ 1 we see that

X4n+4 < X4n < . . .X8 < X4 < X0 and X4n+6 < X4n+2 < . . . < X10 < X6 < X2.

So there exists L4 ≥ 0 and L2 ≥ 0 such that

lim
n→∞

X4n = L4 and lim
n→∞

X4n+2 = L2.

It suffices to show that
L1 = L2 = L3 = L4 = 0.
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By iterations and properties of limits we get:

L1 =
A0L3

1 + L4 + L3
, L2 =

A1L4

1 + L1 + L4
, L3 =

A2L1

1 + L2 + L1
, L4 =

A3L2

1 + L3 + L2
.

Now we will consider two cases:

Case 1 : Suppose that A0A2 = 1. Then notice that by iterations and inequalities

L4n+3 =
A2L1

1 + L2 + L1
≤ A2L1 =

A2A0L3

1 + L4 + L3
=

L3

1 + L4 + L3
.

So we see that
L3 ≤

L3

1 + L4 + L3
and hence L4 + L3 = 0.

Now observe that
L1 =

A0L3

1 + L4 + L3
= 0 and L2 =

A1L4

1 + L1 + L4
= 0.

Hence the result follows.

Case 2 : Suppose that A0A2 < 1. Note that in Case 1 we saw that

X3 < [A0A2]X−1 and X7 < [A0A2]2X−1.

Then it follows that
lim

n→∞
X4n+3 = 0.

Similarly we show that
lim

n→∞
X4n+1 = 0.

Furthermore, as we know that A1A3 ≤ 1, then

L2 =
A1L4

1 + L1 + L4
=

A1L4

1 + L4
=
A1[ A3L2

1+L1+L2
]

1 + A3L2
1+L1+L2

=
[A1A3]L2

1 + L1 + L2 +A3L2
≤ [A1A3]L2

1 + L1 + L2
=

[A1A3]L2

1 + L2
.

If A1A3 < 1, then the result follows that

lim
n→∞

X4n = lim
n→∞

X4n+2 = 0.

If A1A3 = 1, then it follows that

1 + L2 = 1 and thus L2 = 0.

2

3.3 Existence of Solutions with Minimal Period 2.

In this section we will assume that M > 1 and show that Eq.(2) has 2 unique solutions with minimal
period 2. We will assume that either

A0 = A2 > 1 or A1 = A3 > 1.
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Lemma 3.6 Eq.(2) has a positive solution with minimal period 2 if either A0 = A2 > 1 or A1 = A3 > 1.

Proof : Let {Xn}∞n=−1 be a positive solution of Eq.(2). Via Lemma(3.4) we showed that when M ≤ 1,

lim
n→∞

Xn = 0.

Thus it suffices to consider the case when M > 1. Similarly as in Lemma(2.3) we set

X3 = X1 = X−1 and X4 = X2 = X0,

from which we get

A0 = 1 +X0 +X−1 = A2 or A1 = 1 +X0 +X−1 = A3. (6)

From (6) and we see that either A0 = A2 or A1 = A3, and we get one of the following conditions

X0 = (A0 − 1)−X−1 or X−1 = (A1 − 1)−X0.

Now we consider the following two cases:

Case 1 : First suppose that M = A0 = A2 > 1. Then we get

X0 = (A0 − 1)−X−1.

Now observe that by iteration, it follows that

X1 =
A0X−1

1 +X0 +X−1
=

A0X−1

1 + (A0 − 1−X−1) +X−1
=
A0X−1

A0
= X−1,

X2 =
A1X0

1 +X1 +X0
=

A1X0

1 +X−1 +X0
=

A1X0

1 +X−1 + (A0 − 1−X−1)
=
A1X0

A0
= X0.

Note that X2 = X0 provided that X0= 0 as A1 6= A0. Then we proceed with the next two itera-

tions and we get:

X3 =
A2X1

1 +X2 +X1
=

A0X−1

1 + (A0 − 1−X−1) +X−1
=

A0X−1

1 + (A0 − 1−X−1) +X−1
= X−1,

X4 =
A3X2

1 +X3 +X2
=

A3X0

1 +X−1 +X0
=

A3X0

1 +X−1 + (A0 − 1−X−1)
=
A3X0

A0
= X0.

Note that A0 = A2 in order for the equalities to hold and that X4 = X2 = X0 provided X0 = 0 as
A3 6= A0. Hence when A0 = A2 > 1, then the unique period 2 cycle is

X0 = 0 and X−1 = A0 − 1.

Case 2 : Now suppose that M = A1 = A3 > 1. Then we have

X−1 = (A1 − 1)−X0.

Similarly as in Case(1), we get the following unique period 2 cycle

X−1 = 0 and X0 = A1 − 1.

Note: This is identically the same period 2 cycle as in Theorem(2.3) of Section(2.2). 2
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Theorem 3.5 Suppose that X−1 > 0, X0 > 0, and if either A0 = A2 > 1 and A2
0 ≥ A1A3 or

A1 = A3 > 1 and A2
1 ≥ A0A2. Then every solution of Eq.(2) converges to a period 2 cycle.

Proof : From Theorem(1.1) recall that for all n ≥ 1,

0 < Xn < M.

Now let
F (u, v) =

Av

1 + u+ v
.

Then we see for u, v > 0 that fu(u, v) < 0 and fv(u, v) > 0.

Now let {Xn}∞n=−1 be a positive solution of Eq.(2). Then via Theorem(1.1), {Xn}∞n=−1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when M > 1, then Eq.(2) has two
unique period 2 cycles. Therefore the result follows that the solution {Xn}∞n=−1 of Eq.(2) will have two
eventually monotonic subsequences {X2n}∞n=0 and {X2n+1}∞n=−1. 2

Remark 2 From Theorem(4.10) and lemma(4.9), we can show that

(i) A0 = A2 > 1 and A2
0 ≥ A1A3, then

lim
n→∞

X2n = 0 and lim
n→∞

X2n+1 = A0 − 1.

(ii) A1 = A3 > 1 and A2
1 ≥ A0A2, then

lim
n→∞

X2n+1 = 0 and lim
n→∞

X2n = A1 − 1.

3.4 Existence of Solutions with Minimal Period 4.

In this section we will show that Eq.(2) has a unique solution with minimal period 4. We will assume
that

A0 6= A2 and A1 6= A3.

Lemma 3.7 Eq.(2) has a solution with minimum period 4 if either A0 6= A2 and P02 > 1 or A1 6= A3,
and P13 > 1.

Proof : Let {Xn}∞n=−1 be a positive solution of Eq.(2) such that A0 6= A2 and P02 > 1. The case
where A1 6= A3 and P13 > 1 is similar and will be omitted. Observe that

X1 =
A0X−1

1 +X0 +X−1
=

A0X−1

1 +X−1
, X2 =

A1X0

1 +X1 +X0
= 0,

X3 =
A2X1

1 +X2 +X1
=

A2X1

1 +X1
, X4 =

A3X2

1 +X3 +X2
=

A3X2

1 +X3
= 0, . . . .

Now we set
X3 = X−1.

Then observe that

X3 =
A2X1

1 +X1
=

A2A0X−1
1+X−1

1 + A0X−1
1+X−1

=
A2A0X−1

1 +X−1 +A0X−1
= X−1.
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This then implies that
A2A0 = 1 +X−1 +A0X−1 = 1 +X−1(1 +A0).

From the equality above, we get

X−1 =
A2A0 − 1

1 +A0
.

Therefore proceeding with the substitutions we get

X1 =
A0X−1

1 +X−1
=

A0[A2A0−1
1+A0

]

1 + [A2A0−1
1+A0

]
=

A2A
2
0 −A0

1 +A0 +A2A0 − 1
=
A0(A2A0 − 1)
A0(1 +A2)

=
A2A0 − 1

1 +A2
.

Hence we see that the unique period 4 cycle is

X−1 =
A2A0 − 1

1 +A0
, X0 = 0, X1 =

A2A0 − 1
1 +A2

, X2 = 0.

Note: In this case if A0 = A2, then the period 4 cycle becomes a period 2 cycle.
Similarly, the unique period 4 cycle when X−1 = 0, A1 6= A3, and P13 > 1, is

X−1 = 0, X0 =
A3A1 − 1

1 +A1
, X1 = 0, X2 =

A3A1 − 1
1 +A3

.

Note: In this case if A1 = A3 > 1 then the period 4 cycle becomes a period 2 cycle. 2

3.5 Existence of a Positive Solution with Minimal Period 4.

In this section we will show that Eq.(2) has a unique positive solution with minimal period 4. We will
assume that

A0 6= A2, A1 6= A3, P02 = P13 > 1, X−1 > 0, and X0 > 0.

Lemma 3.8 Eq.(2) has a positive solution with minimum period 4 if either:

(i) P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 < A2, A1 > A3, A1 > A2,

(ii) P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 > A2, A1 < A3, A3 > A0,

(iii) P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 > A2, A1 > A3, A0 > A1, or

(iv) P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 < A2, A1 < A3, A2 > A3,

Proof : Let {Xn}∞n=−1 be a positive solution of Eq.(2) such that P02 = P13 > 1, A0 6= A2, A1 6=
A3, A0 < A2, A1 > A3, and A1 > A2. The other cases are similar and will be omitted. Observe that
when X−1 = X1, we get

X1 =
A0X−1

1 +X0 +X−1
= X−1.

This implies that

A0 = 1 +X0 +X−1, (7)

and hence from (7) and substitutions we get
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X2 =
A1X0

1 +X0 +X−1
=
A1X0

A0
, (8)

X3 =
A2X1

1 +X2 +X1
=

A2X−1

1 + [A1X0
A0

] +X−1

= X−1, (9)

X4 =
A3X2

1 +X3 +X2
=

A3X2

1 +X−1 +X2
=

A3[A1X0
A0

]

1 +X−1 + [A1X0
A0

]
= X0. (10)

Then we see from (9) and (10) that

A2 = 1 +
A1X0

A0
+X−1 and

A1A3

A0
= 1 +X−1 +

A1X0

A0
. (11)

Therefore from (11) we get the following relation,

A0A2 = A0 +A1X0 +A0X−1 = A1A3. (12)

It is clear from (12) that

A0A2 = A1A3 and A0A2 −A0 −A0X−1 = A0[A2 − (1 +X−1)] = A1X0. (13)

Now from (7), we substitute
1 +X−1 = A0 −X0,

into (13) and we get

A0A2 −A2
0 +A0X0 = A1X0 and therefore A0A2 −A2

0 = X0(A1 −A0).

Hence we see that

X0 =
A0A2 −A2

0

A1 −A0
.

Therefore the unique positive period 4 cycle we get with the following pattern:

X−1 =
A0(A1 −A2)−A1 +A0

A1 −A0
, X0 =

A0A2 −A2
0

A1 −A0
,

X1 =
A0(A1 −A2)−A1 +A0

A1 −A0
, X2 =

A0A1A2 −A2
0A1

A0A1 −A2
0

.

We will also get the above unique period 4 cycle when P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 > A2, A1 <
A3, A3 > A0. Similarly when P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 > A2, A1 > A3, A0 > A1, or when
P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 < A2, A1 < A3, A2 > A3, we get another unique positive period 4
cycle with the following pattern:

X−1 =
A1A2A3 −A2

1A2

A1A2 −A2
1

, X0 =
A1(A2 −A3)−A2 +A1

A2 −A1
,

X1 =
A1A3 −A2

1

A2 −A1
, X2 =

A1(A2 −A3)−A2 +A1

A2 −A1
.

2
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Theorem 3.6 Suppose that X−1 > 0, X0 > 0, A0 6= A2, A1 6= A3, and either A0A2 > 1 or A1A3 > 1.
Then every solution of Eq.(2) converges to a period 4 cycle.

Proof : From Theorem(1.1) recall that for all n ≥ 1,

0 < Xn < M.

Now let
F (u, v) =

Av

1 + u+ v
.

Then we see for u, v > 0 that fu(u, v) < 0 and fv(u, v) > 0.

Now let {Xn}∞n=−1 be a positive solution of Eq.(2). Then via Theorem(1.1), {Xn}∞n=−1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when P02 > 1 or P13 > 1, then
Eq.(2) has four unique period 4 cycles. Therefore the result follows that the solution {Xn}∞n=−1 of
Eq.(2) will have four eventually monotonic subsequences {X4n}∞n=0,{X4n+1}∞n=−1, {X4n+2}∞n=−1, and
{X4n+3}∞n=−1. 2

Remark 3 Suppose X−1 > 0 and X0 > 0. Then Eq.(2) converges to a solution with minimal period 4
if either:

(i) A0 6= A2, P02 > 1, and A0A2 > A1A3, or if A0A2 = A1A3, A0 > A2, A1 < A3, and A3 < A0, or
if A0A2 = A1A3, A0 > A2, A1 > A3, and A0 < A1, then

lim
n→∞

X4n = lim
n→∞

X4n+2 = 0, lim
n→∞

X4n−1 =
A2A0 − 1

1 +A0
, and lim

n→∞
X4n+1 =

A2A0 − 1
1 +A2

.

(ii) A1 6= A3, P13 > 1, and A1A3 > A0A2, or if A0A2 = A1A3, A0 < A2, A1 > A3, and A1 < A2, or
if A0A2 = A1A3, A0 < A2, A1 > A3, and A1 > A2 then

lim
n→∞

X4n−1 = lim
n→∞

X4n+1 = 0, lim
n→∞

X4n =
A3A1 − 1

1 +A1
, and lim

n→∞
X4n+2 =

A3A1 − 1
1 +A3

.

(iii) If A0A2 = A1A3, A0 < A2, A1 > A3, and A1 > A2 or if A0A2 = A1A3, A2 < A0, A1 < A3, and
A3 > A0, then

lim
n→∞

X4n−1 = lim
n→∞

X4n+1 =
A0(A1 −A2)−A1 +A0

A1 −A0
,

lim
n→∞

X4n =
A0A2 −A2

0

A1 −A0
, lim

n→∞
X4n+2 =

A0A1A2 −A2
0A1

A0A1 −A2
0

.

(iv) If A0A2 = A1A3, A0 > A2, A1 > A3, and A0 > A1 or if A0A2 = A1A3, A0 < A2, A1 < A3, and
A2 > A3, then

lim
n→∞

X4n = lim
n→∞

X4n+2 =
A1(A2 −A3)−A2 +A1

A2 −A1
,

lim
n→∞

X4n+1 =
A1A3 −A2

1

A2 −A1
, lim

n→∞
X4n−1 =

A1A2A3 −A2
1A2

A1A2 −A2
1

.

4 The Case {An}∞n=0 is periodic with period 2k.

In this section we will assume that {An}∞n=0 is periodic with minimal period 2k, such that k = 1, 2, 3, . . . .
Now let

P1 = A0A2A4 · · ·A2k−4A2k−2, P2 = A1A3A5 · · ·A2k−3A2k−1, and M = max{A0, A1, A2, . . . , A2k−1}.

We will investigate the monotonic and periodic nature of the solutions of Eq.(2). In particular, we will
discover the existence of multiple periodic solutions of different periods of Eq.(2).
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4.1 Convergence to Zero.

Theorem 4.7 Let {Xn}∞n=−1 be a positive solution of Eq.(2). Suppose that M ≤ 1. Then

lim
n→∞

Xn = 0.

Proof : The Proof is similar to the proof given in Lemma(2.1) and Lemma(3.4) and will be omitted.
2

Theorem 4.8 Let {Xn}∞n=−1 be a positive solution of Eq.(2). Suppose that P1 ≤ 1 and P2 ≤ 1. Then

lim
n→∞

Xn = 0.

Proof : The Proof is similar to the proof given in Lemma(3.5) and will be omitted. 2

4.2 Existence of Solutions with Minimal Period 2.

In this section we will assume that M > 1 and show that Eq.(2) has a unique solution with minimal
period 2. We will assume that either

A0 = A2 = A4 = · · · = A2k−2 > 1 or A1 = A3 = A5 = · · · = A2k−1 > 1.

Lemma 4.9 Eq.(2) has a positive solution with minimal period 2 if either

(i) A0 = A2 = A4 = · · · = A2k−2 > 1 and X0 = 0, or

(ii) A1 = A3 = A5 = · · · = A2k−1 > 1 and X−1 = 0.

Proof : Proof follows from Theorem(2.4) and lemma(3.5) and will be omitted. 2

Theorem 4.9 Suppose that X−1 > 0, X0 > 0, and if either A0 = A2 = · · · = A2k−2 > 1 and
Ak

0 ≥ P135···(2k−1) or A1 = A3 = · · · = A2k−1 > 1 and Ak
1 ≥ P0246···(2k−2). Then every solution of

Eq.(2) converges to a period 2 cycle.

Proof : From Theorem(1.1) recall that for all n ≥ 1,

0 < Xn < M.

Now let
F (u, v) =

Av

1 + u+ v
.

Then we see for u, v > 0 that fu(u, v) < 0 and fv(u, v) > 0.

Now let {Xn}∞n=−1 be a positive solution of Eq.(2). Then via Theorem(1.1), {Xn}∞n=−1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when M > 1, then Eq.(2) has two
unique period 2 cycles. Therefore the result follows that the solution {Xn}∞n=−1 of Eq.(2) will have two
eventually monotonic subsequences {X2n}∞n=0 and {X2n+1}∞n=−1. 2

Remark 4 From lemma(4.9) and Theorem(4.9), we can show that

(i) A0 = A2 = · · · = A2k−2 > 1 and Ak
0 ≥ A1A3A5 · · ·A2k−1, then

lim
n→∞

X2n = 0 and lim
n→∞

X2n+1 = A0 − 1.

(ii) A1 = A3 = · · · = A2k−1 > 1 and Ak
1 ≥ A0A2A4 · · ·A2k−2, then

lim
n→∞

X2n+1 = 0 and lim
n→∞

X2n = A1 − 1.

13



4.3 Existence of Solutions with Minimal Period 4.

In this section we will show that Eq.(2) has a unique solution with minimal period 4. We will assume
that 2k is a multiple of 4 and that either

A0 = A4 = · · · = A2k−4 6= A2 = A6 · · · = A2k−2 and A1 = A5 = · · · = A2k−3 6= A3 = A7 = · · · = A2k−1.

Lemma 4.10 Eq.(2) has a solution with minimum period 4 if either:

(i) X0 = 0, A0 = A4 = · · · = A2k−4 6= A2 = A6 · · · = A2k−2 , and P024···(2k−2) > 1, or

(ii) X−1 = 0, A1 = A5 = · · · = A2k−3 6= A3 = A7 = · · · = A2k−1, and P135···(2k−1) > 1.

Proof : Proof follows from lemma(3.6) and will be omitted. 2

4.4 Existence of a Positive Solution with Minimal Period 4.

In this section we will show that Eq.(2) has a unique positive solution with minimal period 4. We will
assume that 2k is a multiple of 4 and that

A0 = A4 = · · · = A2k−4 6= A2 = A6 = · · · = A2k−2 or A1 = A5 = · · · = A2k−3 6= A3 = A7 = · · · = A2k−1,

P024···(2k−2) = P135···(2k−1) > 1, X−1 > 0, and X0 > 0.

Lemma 4.11 Eq.(2) has a positive solution with minimum period 4 if either:

(i) P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 < A2, A1 > A3, A1 > A2,

(ii) P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 > A2, A1 < A3, A3 > A0,

(iii) P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 > A2, A1 > A3, A0 > A1, or

(iv) P02 = P13 > 1, A0 6= A2, A1 6= A3, A0 < A2, A1 < A3, A2 > A3,

Proof : Proof follows from lemma(3.7) and will be omitted. 2

Theorem 4.10 Suppose that X−1 > 0, X0 > 0, either A0A2 > 1 or A1A3 > 1. Then every solution of
Eq.(2) converges to a period 4 cycle.

Proof : From Theorem(1.1) recall that for all n ≥ 1,

0 < Xn < M.

Now let
F (u, v) =

Av

1 + u+ v
.

Then we see for u, v > 0 that fu(u, v) < 0 and fv(u, v) > 0.

Now let {Xn}∞n=−1 be a positive solution of Eq.(2). Then via Theorem(1.1), {Xn}∞n=−1 of Eq.(2) will
have finitely many eventually monotonic subsequences. Recall that when P02 > 1 or P13 > 1, then
Eq.(2) has four unique period 4 cycles. Therefore the result follows that the solution {Xn}∞n=−1 of
Eq.(2) will have four eventually monotonic subsequences {X4n}∞n=0,{X4n+1}∞n=−1, {X4n+2}∞n=−1, and
{X4n+3}∞n=−1. 2

Remark 5 Suppose X−1 > 0 and X0 > 0. Then Eq.(2) converges to a solution with minimal period 4
if (i)-(x) occurs in Remark 3.
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4.5 Existence of Solutions with Minimal Period 2l; l ≤ k.

In this section we will assume that either:

P1 > 1 and P1 > P2 or P2 > 1 and P2 > P1,

and show that Eq.(2) has a unique solution with minimal period 2l.

Lemma 4.12 Eq.(2) has a solution with minimal period 2l if

(i) 2l divides 2k and either

(ii) P1 > 1 and P1 > P2 or P2 > 1 and P2 > P1.

Proof : We will assume that 2l divides 2k and consider the case where X0 = 0, P1 > 1, and P1 > P2.
The case where X−1 = 0, P2 > 1, and P2 > P1 is similar and will be omitted.

Suppose that X0 = 0, then by iterations and substitutions we get:

X1 =
A0X−1

1 +X0 +X−1
=

A0X−1

1 +X−1
X2 =

A1X0

1 +X1 +X0
= 0, X3 =

A2X1

1 +X2 +X1
=

A2X1

1 +X1
,

X4 =
A3X2

1 +X3 +X2
= 0, X5 =

A4X3

1 +X4 +X3
=

A4X3

1 +X3
,

...

X2l−3 =
A2l−4X2l−5

1 +X2l−4 +X2l−5
=
A2l−4X2l−5

1 +X2l−5
, X2l−2 =

A2l−3X2l−4

1 +X2l−3 +X2l−4
= 0,

X2l−1 =
A2l−2X2l−3

1 +X2l−2 +X2l−3
=
A2l−2X2l−3

1 +X2l−3
, X2l =

A2l−1X2l−2

1 +X2l−1 +X2l−2
= 0.

Now we set
X2l−1 = X−1.

By substitution we get that the period 2l cycle is:

X−1 =
P1 − 1

1 +A0 +A0A2 +A0A2A4 + · · ·+A0A2A4 . . . A2l−8A2l−6A2l−4
, X0 = 0,

X1 =
P1 − 1

1 +A2 +A2A4 +A2A4A6 + · · ·+A2A4A6 . . . A2l−6A2l−4A2l−2
, X2 = 0,

X3 =
P1 − 1

1 +A4 +A4A6 +A4A6A8 + · · ·+A4A6A8 . . . A2l−4A2l−2A0
, X4 = 0,

X5 =
P1 − 1

1 +A6 +A6A8 +A6A8A10 + · · ·+A6A8A10 . . . A2l−2A0A2
, X6 = 0,

X7 =
P1 − 1

1 +A8 +A8A10 +A8A10A12 + · · ·+A8A10A12 . . . A0A2A4
, X8 = 0,

...
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X2l−3 =
P1 − 1

1 +A2l−2 +A2l−2A0 +A2l−2A0A2 + · · ·+A2l−2A0A2 . . . A2l−10A2l−8A2l−6
, X2l−2 = 0,

X2l−1 =
P1 − 1

1 +A0 +A0A2 +A0A2A4 + · · ·+A0A2A4 . . . A2l−8A2l−6A2l−4
.

2

Theorem 4.11 Suppose X−1 > 0 and X0 > 0. Then Eq.(2) converges to a solution with minimal
period 2l if either:

P1 > 1, P1 ≥ A1A3A5 · · ·A2k−1 or P2 > 1, P2 ≥ A0A2A4 · · ·A2k−2.

Conjecture 1 It is of paramount interest to determine the existence of positive periodic cycles and to
what periodic cycles the solutions of Eq.(2) will converge to for l ≥ 3.

Example 1 In this example we will let k = 12 and thereby assume {An}∞n=0 is periodic with minimal
period 2(12) = 24. Hence when l = 1, 2, 3, 4, 6 or 12, there exist periodic solutions with minimal period
2,4,6,8,12, and 24 respectively.

l = 1 : Solutions with Minimal Period 2: Let

A0 = A2 = A4 = A6 = A8 = A10 = A12 = A14 = · · · = A22.

The Period 2 Cycle of Eq.(2) is then

X−1 = A0 − 1, X0 = 0, X1 = A0 − 1, and X2 = 0.

l = 2 : Solutions with Minimal Period 4: Let

A0 = A4 = A8 = A12 = · · · = A20, and A2 = A6 = A10 = A14 = · · · = A22.

The Period 4 Cycle of Eq.(2) is then

X−1 =
A2A0 − 1

1 +A0
, X0 = 0, X1 =

A2A0 − 1
1 +A2

, X2 = 0, X3 =
A2A0 − 1

1 +A0
= X−1, X4 = 0 = X0.

l = 3 : Solutions with Minimal Period 6: Let

A0 = A6 = A12 = A18, A2 = A8 = A14 = A20, and A4 = A10 = A16 = A22.

The Period 6 Cycle of Eq.(2) is then

X−1 =
A4A2A0 − 1

1 +A0 +A2A0
, X0 = 0, X1 =

A4A2A0 − 1
1 +A2 +A4A2

, X2 = 0,

X3 =
A4A2A0 − 1

1 +A4 +A4A0
, X4 = 0, X5 =

A4A2A0 − 1
1 +A0 +A2A0

= X−1, X6 = 0 = X0,

X7 =
A4A2A0 − 1

1 +A2 +A4A2
= X1, X8 = 0 = X2, X9 =

A4A2A0 − 1
1 +A4 +A4A0

= X3, X10 = 0 = X4.
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l = 6 : Solutions with Minimal Period 12: Let

A0 = A12, A2 = A14, A4 = A16, A6 = A18, A8 = A20, and A10 = A22.

The Period 12 Cycle of Eq.(2) is then

X−1 =
P0246810 − 1

1 +A0 +A2A0 +A4A2A0 +A6A4A2A0 +A8A6A4A2A0
, X0 = 0,

X1 =
P0246810 − 1

1 +A2 +A4A2 +A6A4A2 +A8A6A4A2 +A10A8A6A4A2
, X2 = 0,

X3 =
P0246810 − 1

1 +A4 +A6A4 +A8A6A4 +A10A8A6A4 +A10A8A6A4A0
, X4 = 0,

X5 =
P0246810 − 1

1 +A6 +A8A6 +A10A8A6 +A10A8A6A0 +A10A8A6A2A0
, X6 = 0,

X7 =
P0246810 − 1

1 +A8 +A10A8 +A10A8A0 +A10A8A2A0 +A10A8A4A2A0
, X8 = 0,

X9 =
P0246810 − 1

1 +A10 +A10A0 +A10A2A0 +A8A4A2A0 +A10A6A4A2A0
, X10 = 0,

X11 =
P0246810 − 1

1 +A0 +A2A0 +A4A2A0 +A6A4A2A0 +A8A6A4A2A0
, X12 = 0.

5 Conclusion and Future Work.

It is of paramount interest to continue the investigation of the monotonicity and the periodicity of the
poisitive solutions of Eq.(2) when {An}∞n=0 is periodic with an even period and with an odd period and
how the delay(s) of Eq.(2) and the period of {An} will affect the periodic character of the solutions of
Eq.(2). Furthermore, it is of importance to continue the study of the following difference equations:

(i)

Xn+1 =
AnXn−l

1 +Xn +Xn−l
, n = 0, 1, 2, . . .

where l = 2, 3, 4, . . .

(ii)

Xn+1 =
AnXn−l

1 +Xn +Xn−1 + · · ·+Xn−l
, n = 0, 1, 2, . . .

where l = 2, 3, 4, . . .

(iii)

Xn+1 =
AnXn−l

1 +B0Xn +B1Xn−1 + · · ·+BlXn−l
, n = 0, 1, 2, . . .

where l = 2, 3, 4, . . ., and
∑l

j=0Bj ≥ 0.
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