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Abstract

Opioid addiction has become a global epidemic and a national health crisis in recent
years, with the number of opioid overdose fatalities steadily increasing since the 1990s.
In contrast to the dynamics of a typical illicit drug or disease epidemic, opioid addic-
tion has its roots in legal, prescription medication—a fact which greatly increases
the exposed population and provides additional drug accessibility for addicts. In this
paper, we present a mathematical model for prescription drug addiction and treat-
ment with parameters and validation based on data from the opioid epidemic. Key
dynamics considered include addiction through prescription, addiction from illicit
sources, and treatment. Through mathematical analysis, we show that no addiction-
free equilibrium can exist without stringent control over how opioids are administered
and prescribed, in which case we estimate that the epidemic would cease to be self-
sustaining. Numerical sensitivity analysis suggests that relatively low states of endemic
addiction can be obtained by primarily focusing on medical prevention followed by
aggressive treatment of remaining cases—even when the probability of relapse from
treatment remains high. Further empirical study focused on understanding the rate of
illicit drug dependence versus overdose risk, along with the current and changing rates
of opioid prescription and treatment, would shed significant light on optimal control
efforts and feasible outcomes for this epidemic and drug epidemics in general.

Keywords Population biology - Dynamical systems - Epidemiology -
Compartmental model - Mathematical biology - Prescription drug addiction

1 Introduction

Starting in the mid 1990s, allegations arose that the medical field systematically under-

treated pain, and the American Pain Society (a professional organization) lobbied
to have pain recognized as a fifth vital sign which, if adopted, would require all
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physicians to accept and treat patient pain reports—naturally leading to an increase
in opioid prescriptions and increasing profits for drug manufacturers (Van Zee 2009;
Mandell 2016). Meanwhile, the confounding medical literature appeared suggesting
that cancer patients using prescription opioids to treat their chronic pain did not become
addicted (Porter and Jick 1980; Perry and Heidrich 1982; Schug et al. 1992). One study
found that only one participant out of 550 developed an addiction to their prescription
painkillers (Schug et al. 1992). Another study found no cases of addiction among
10,000 burn victims using prescription opioid drugs (Perry and Heidrich 1982). With
these data, it began to appear as though physicians could safely prescribe opioids to
those in chronic pain without fear of addiction.

By 2000, the Joint Commission began requiring that healthcare organizations assess
and treat pain in all patients (Mandell 2016). OxyContin prescriptions for non-cancer-
related pain increased from 670,000 in 1997 to nearly 6.2 million in 2002 (Van Zee
2009). This trend continued through the early 2000s, and in 2012, it was discovered
that 259 million opioid prescriptions had been written—enough for every adult in
America to have at least one bottle of pills (CDC 2014). By 2014, almost 2 million
Americans abused or were dependent on prescription opioids (Hughes et al. 2016).

Unfortunately, the increase in opioid prescriptions has led to an increase in opioid
addiction and abuse, affecting all age demographics. Large quantities of unused pre-
scription drugs are currently available in many prescribed users’ homes (Bicket et al.
2017), and in 2015, 276,000 American adolescents were abusing painkillers for non-
medical reasons (Hughes et al. 2016)—many of whom obtained them from a friend or
relative who had a prescription (Twombly and Holtz 2008; Han et al. 2017). In older
age-groups, regular, long-term opioid use is more common (Campbell et al. 2010)
with possibly one in four long-term opioid users struggling with addiction (Boscarino
et al. 2010). Geographically, the opioid epidemic not only affects densely populated
areas, but hits rural areas, especially hard as well (Keyes et al. 2014).

Misconceptions regarding prescription opioids make them especially dangerous
and include the following: (1) Since opioids are medically prescribed they are safe,
(2) you cannot get addicted to prescription painkillers if taken as prescribed, (3) a
person is able to safely self-medicate for pain with opioids, (4) only long-term use of
certain opioids produces addiction (Twombly and Holtz 2008; Volkow and McLellan
2016). The coupling of these misconceptions with the general availability of opioids
makes this epidemic unlike previous drug waves. To make matters worse, many opioid
addicts switch to heroin as a cheaper alternative to prescription opioids (Muhuri Pradip
et al. 2013), with estimates suggesting that as many as 4 out of 5 new heroin users had
abused prescription painkillers prior to starting heroin (Jones 2013). This is contrary to
previous trends of addiction moving from heroin use to prescription painkillers abuse
in the mid-1950s (Hughes et al. 1972; Lankenau et al. 2012).

As of October 26, 2017, the US Department of Health and Human Services has
declared the opioid crisis a public health emergency (Davis 2017). Yet despite the
current seriousness and scale of the opioid epidemic, the need for effective intervention
strategies, and an abundance of literature on mathematical epidemiology for infectious
diseases, rigorous mathematical theory has yet to be applied to opioid addiction as it
has for other diseases. In fact, very little has been published applying mathematical
epidemiology to the problem of drug use in general. White and Comiskey (2007)
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published perhaps the first such model, mathematically describing the heroin epidemic
as a system of differential equations resembling the classic SIR model of Kermack and
McKendrick (1927). Alterations of this model were subsequently studied by several
authors including Nyabadza and Hove-Musekwa (2010), Samanta (2011), Huang and
Liu (2013), Bin et al. (2015), and Ma et al. (2017), all targeting heroin. In 2012,
Njagarah and Nyabadza (2013) described a model exploring the dynamics of drug
abuse epidemics more generally, focusing on the interplay between light users, heavy
users, and rehabilitation. However, to our knowledge no one to date has developed
and analyzed a compartmental differential equation model specifically for prescription
opioids with the intent of better understanding the dynamics involved. Since opioids are
regularly prescribed to a broad demographic segment of the population and addiction
can arise directly from medical prescription, we expect the dynamics of this epidemic
to be significantly unlike any purely illicit drug epidemic that has been studied in the
past.

In this paper, we investigate the dynamics driving the opioid epidemic by for-
mulating and analyzing an SIR-inspired model (Kermack and McKendrick 1927;
Anderson and May 1979) based on White and Comiskey (2007) and built specifi-
cally to study addiction to a general class of prescription drugs. Our model includes
multiple routes leading to dependency and addiction that are specific to prescription
medication, including a “prescribed” class that both directly feeds the addicted popu-
lation and contributes secondary cases via unsecured or unused drugs. We then analyze
the model for key properties and conditions that may lead to a meaningful reduction
in the number of addicted people and discuss our conclusions. Our results include
a detailed description of equilibrium solutions under different model-structure sce-
narios and extensive numerical analysis describing parameter sensitivity and 10-year
projections under a large variety of realistic and hypothetical parameter choices. We
emphasize that the goal of this paper is to investigate broad trends in prescription
opioid addiction rather than localized interactions in order to narrow down possible
national strategies for arresting the epidemic in the long term. A discussion of our
findings in this context is included in the Discussion and Conclusion section.

2 Mathematical Methods
We begin by defining four population classes:

1. S (“susceptibles”): This represents the proportion of individuals who are not using
opioids or actively recovering from addiction. They may be prescribed opioids at
a fixed rate (@).

2. P (“prescribed users”): This represents the proportion of individuals who are
prescribed opioids but do not have an addiction to them. Members have some
inherent rate () of becoming addicted to their prescriptions, and a rate of finishing
their prescription without addiction (¢).

3. A (“addicted”): This compartment represents the proportion of addicted opioid
users, regardless of if their drugs are prescribed. There are multiple routes to this
class in our model. One is prescription-induced (y) addiction, while two other
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Fig. 1 Opioid model schematic. A schematic diagram showing the relationships between all the classes in
the compartmental model of opioid addiction given by Eqs. 1-4. Red arrows denote death rates, which are
passed back into S to maintain a constant population. The gray arrow represents nonlinear relapse rates
which will be considered in an expanded version of the model for analysis purposes (Color figure online)

routes from S do not go through the P compartment: one based on interactions
with addicted users or their dealers (84) and another based on the presence of
opioid patients (Bp) in the form of unsecured or extra drugs (Hughes et al. 2016).
Addicted users enter treatment at rate (¢ ). Here, we define an addicted individual as
someone exhibiting a pattern of continued non-medical use with potential for harm
(Vowles et al. 2015). We will assume throughout this paper that the term “pain
reliever use disorder,” which appears regularly in government reports (Hughes
et al. 2016), satisfies this definition and that persons who “misuse” prescription
opioids without further explanation do not satisty the definition.

4. R (“rehabilitation/treatment”): This compartment represents the proportion of
individuals who are in treatment for their addiction. We include an inherent, linear
rate of falling back into addiction (o) in contrast to White and Comiskey (2007)
who only allow for a nonlinear rate. Also different in our model: members of the
recovering class who complete their treatment can return to being susceptible (at
rate §). We note that structurally, this rate simply augments ¢ R and so may also be
thought of as an enhanced death rate for R (in the case that prior opioid addiction
is related to a higher mortality risk) or be set to zero without any drastic change
expected in the dynamics.

The system is illustrated in Fig. 1 and is specified via four continuous-time differ-
ential equations

S =—aS —PaSA—BpSP +€P + R+ pu(P+R)+ pu*A ey
P=aS—(c+y+uP ()
A=yP+0R+BaSA+BpSP — (¢ +u"A 3)
R=CA—(+0+nR. (4)
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where weset S+ P+ A+ R = 1 sothat S, P, A, and R represent the mean expected
fraction of the population for each class. We note that $ + P + A 4+ R = 0 implies that
S+ P+ A+ R = 1 for all time, and positivity of the solution set is assured because of
the density-dependent decay terms: for each variable S, P, A, R > 0, § = 0 implies
S = 0, P = O implies P = 0, etc. Taken together, these facts bound each of S, P, A, R
above by 1 and consequently, also below by zero. Time ¢ is understood to be in years,
and all rates can be assumed to be yearly rates.

This model assumes that any mortality due to opioid-related overdose is insufficient
to significantly change total population proportions (S, P, A, and R), and all deaths are
recycled back into the S class to maintain the relation S+ P + A+ R = 1. Additionally,
we attempt to simplify the system by considering only a first-order addiction rate y P
from the P class to the A class, assuming that prescribed medication (perhaps from
multiple doctors) is the primary source of opioids for most of these users. The second-
order effects due to mass action with A and P in the P — A route would likely
also need to include feedback effects including a dynamic, whereby large numbers
of addicted promote additional caution in the prescribed and susceptible class, and
we felt that this study was beyond the scope of a first model for prescription opioid
addiction. In a departure from the approach taken by White and Comiskey (2007), we
assume that relapse from R to A would occur even in the absence of other prescribed
or addicted individuals at an intrinsic rate o. As far as we are aware, this is the first time
such a linear rate has been considered in a mathematical model of opioid or heroin
addiction, and we will also consider a case of the model (Egs. 8—11) that includes mass
action terms RA or R P, which may be considered to represent higher-order relapse
effects.

In order to properly contextualize the epidemic model presented here within the
existing heroin-addiction-based literature, we note that our model differs from the
(White and Comiskey 2007) model by initially replacing the nonlinear relapse term
v1 RA with a linear one, and by adding a prescribed class with numerous interactions
with the other classes. Equations (8—11) build on this model by adding nonlinear
relapse terms, with the result that the model then becomes a direct extension of (White
and Comiskey 2007) to prescription drugs. In our analysis (Sect. 3.1), we will also
consider various subsets of these models purely for the purpose of better understanding
the structure and dynamics of the full model. These reduced models will be similar to
(White and Comiskey 2007), but with the possibility of linear relapse and P acting as
something of a temporary holding state.

While the model is rich enough so that many of its sub-models can have interesting
features, our main purpose here is to better understand the dynamics involved in a
prescription drug epidemic as seen on a coarse, national level. In particular, we will
use data sourced from the literature to show that prescriptions (as opposed to illicitly
sourced drugs) appear to be the essential driver behind the current opioid epidemic,
and extensive numerical results will identify key aspects of the model important for
control efforts including a large array of model projections based on data and numerous
parameter regimes of interest.
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Table 1 Estimated parameters for the opioid model (all rates per-capita yearly)

Description Est. value  Refs.
o Prescription rate per person per year 0.15 CDC (2017)
€ End prescription without addiction (rate)  0.8-8 Shah et al. (2017)
Bp  lllicit addiction rate based on P-class 0.00266 Han et al. (2017), Hughes et al. (2016)
Ba  llicit addiction rate based on A-class 0.00094 Han et al. (2017), Hughes et al. (2016)
y Prescription-induced addiction rate 0.00744 Vowles et al. (2015), Shah et al. (2017)
¢ Rate of A entry into rehabilitation 0.2-2
) Successful treatment rate 0.1 Weiss and Rao (2017)
o Natural relapse rate of R-class 0.9 Smyth et al. (2010), Bailey et al. (2013),
Weiss and Rao (2017)
I Natural death rate 0.00729 Kochanek et al. (2017)
w*  Death rate of addicts 0.01159 Gwira Baumblatt et al. (2014),

Hughes et al. (2016),
Kochanek et al. (2017),
Seth et al. (2018)

2.1 Model Parameters

We estimated parameter values from the literature wherever possible with the goal of
focusing our attention on a neighborhood of likely values. These estimations are given
in Table 1. US national-level data were used in all cases as a matter of availability, with
local municipality data being hard to acquire if it is available at all. Our goal therefore
is to demonstrate that our model produces reasonable results in an approximately
average scenario with social and demographic stratification left as a matter for future
work.

The 2017 CDC Annual Surveillance report states that in 2016, 19.1 out of 100
persons received one or more opioid prescriptions (CDC 2017). As some of these will
have been continuing patients from the previous year, we assume that ¢, our yearly
rate of moving from S to P, is less than 19.1. We were unable to find more specific data
on this rate and so estimated that « = 0.15. €, the rate of ending opioid prescription
use per prescription user-year, was even more difficult to find data on. Most patients
end opioid use in less than a month, while a smaller fraction can continue using opioid
for over 3 years (Shah et al. 2017). For this reason, we explored a range of values for €
from 0.8 to 8 representing a general belief that most users will quit using prescription
opioids in under a year if they have not become addicted.

Our prescription-induced addiction rate (y = 0.00744) is based off of a compre-
hensive review (Vowles et al. 2015) which sifted through many opioid patient addiction
studies of varying qualities and methodologies and found significant variance in the
addiction rates of prescription opioid users who had been on their prescriptions for
at least 90 days (95% confidence interval would have a rate of approximately 0.057-
0.169 in an unweighted collection of studies). Taking only the high-quality studies
and an average of the minimum and maximum percents, we estimated that 9.3% of
chronic, non-cancer pain patients become addicted to their opioid prescriptions. Using
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data that 0.75 of people using prescription opioids for 3 months go on to use for a year
and that 0.06 of all initiates to prescription opioids use for a year (Shah et al. 2017),
we arrived at our value for y as a rate for addictions per prescribed user-year.

We then derived an illicit-induced addiction rate (0.0036) based on the ratio of
physician-based sources of prescription opioids to other sources among adults report-
ing prescription opioid use disorder (Han et al. 2017), and given that the Substance
Abuse and Mental Health Services Administration (SAMHSA) suggest that 2.1 mil-
lion people abused prescription opioids for the first time in 2015 out of a population
of 320 million (Hughes et al. 2016). Using these same source data (Han et al. 2017),
the illicit-induced rate was then subdivided by differentiating the cases in which a user
primarily obtains opioids from friends, relatives, or other similar prescribed individ-
uals (Bp) or from a source related to general addictive demand (drug dealers) (84).
Based on these data, we were able to estimate that 74% of users primarily obtain
illicit opioids from friends/ relatives/ other verses drug dealers or strangers, resulting
in Bp = 0.00266 and B4 = 0.00094. These parameter estimates are only meant to be
rough starting points for the purpose of basic analysis, particularly as we expect these
numbers to vary with both time and location.

The literature broadly suggests that approximately 90% of those entering treatment
relapse during the first year in recovery (Smyth et al. 2010; Bailey et al. 2013; Weiss
and Rao 2017). Acute stage withdrawal lasts at most a few weeks (Gossop et al. 1987),
and studies on heroin addicts suggest that up to 70% of recovering addicts may relapse
during the first month after treatment ends (Smyth et al. 2010; Bailey et al. 2013). A
study on US prescription opioid addicts (no heroin) similarly found that eight weeks
after cessation of treatment, only 9% had not relapsed (Weiss and Rao 2017). We
could not find published data on four weeks post-treatment. While we assume that this
rate would be lower if the overall supply and demand of illicit drugs were reduced, it
is hard to tease out to what extent. Therefore, we took the timescale of recovery and
relapse to be approximately 1 year and made an estimate of 0.9 for the base relapse
rate o, the estimated yearly proportion of R that relapse. While this is certainly a very
rough estimate that neglects nonlinear factors such as temporally dependent stages of
withdrawal, environmental effects, and discrepancy in treatment methodology over
both time and location, we believe it to be a reasonable enough guess to serve as a
gross estimate in this first model. For completeness, we also examine the addition of
both a vi RP and vy R A relapse terms to the model structure in Sect. 3 and Appendix
A.4, but with the note that the model was not sensitive to these terms compared to
o R (see Fig. 4) and that any estimation of the associated parameters is likely to be
extremely difficult from an empirical point of view.

To estimate u*, the overall death rate for prescription opioid addicts, we started
by making a rough estimate that 0.546 of all opioid deaths in the USA are attributed
to addicted persons based on (Gwira Baumblatt et al. 2014). The prescription opioid
death rate for the entire population is estimated to be 5.2 out of every 100,000 people
per year (Seth et al. 2018), or 0.000052 deaths per person per year. We then used an
estimate for the number of people with a prescription drug use disorder contemporary
to the previous data (and an estimated US population of 300 million) to find the rate of
prescription opioid deaths for the addicted class (Hughes et al. 2016). We then added
the natural yearly death rate (obtained from Kochanek et al. (2017) by discounting
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addiction-related opioid deaths), to arrive at a total yearly death rate for the addicted
class, e.g.,

0.546 add. opioid deaths (5.2 opioid deaths 300 x 10° people
1 opioid death ' ( 100,000 people ) ' (2.0 x 106 addicted)
728.8 deaths — 0.546 - 5.2 add. opioid deaths
+ ( 100,000 addicted

deaths
addicted - year’

) =0.01152

Since p and p* represent continuous-time rates, we then assumed that A} = Ager”
where A1 = (1 —0.01152) A and similarly for p. Solving these equations yields the
values given in Table 1.

3 Results

The model was validated against national data for prescription opioid deaths between
1999 and 2016 (Hedegaard et al. 2017). To estimate the proportion of these fatalities
that could be attributed specifically to addicted individuals rather than misuse by others,
we adopted the percentage of prescription opioid deaths (54.6%) attributed to persons
who had one or more high-risk factors, such as greater than 4 prescribers, 4 different
pharmacies, or a daily dosage greater than 100 morphine milligram equivalents (MME)
(Gwira Baumblatt et al. 2014). Simulations were then carried out using the estimated
parameter values from Table 1 (see Fig. 2) and initial conditions chosen to approximate
the proportion of each model compartment class present in 1999 (see Appendix A.1).
In each simulation, we varied the rates of ending opioid prescriptions without addiction
(¢) and treatment initiation (¢). The number of simulated opioid-related deaths was
then found by computing pop(t) x (u* — p)A(t), where pop(t) was computed by
taking the US population between 1999 and 2016 and finding the best-fit line through
the data (U.S. Census Bureau: International Database 2018).

Each color in Fig. 2 corresponds to a particular € value with { € [0, 1]. Our
model generally agrees with the data for over a range of € and ¢ values. Additionally,
we explored which combinations of «, €, and ¢ would exactly predict the number
of 2016 opioid overdose deaths attributed to individuals who are addicted. These
relationships are found in Fig. 3. A few of the points on the feasibility curves were also
chosen to highlight population fractions within realistic ranges. For example, when
a = 0.05,¢ = 0.30,and ¢ = 1.32, we find population fractions of S(2016) = 0.8518,
P(2016) = 0.1353, A(2016) = 0.0057, and R(2016) = 0.0072. Or when « = 0.25,
€ = 5.40, and ¢ = 0.220, we predict population fractions of S(2016) = 0.9493,
P(2016) = 0.0438, A(2016) = 0.0057, and R(2016) = 0.0012. Roughly, 2 million
Americans had a substance abuse disorder involving prescription opioids in 2016;
hence, roughly 2 x 10°/300 x 10 US Pop = 0.0066 of Americans were actually
addicted to prescription opioids, though this number is for the entire year. Between
1998 and 2006, one estimation for P is that 2% of adults were taking an opioid in any
given week (Boudreau et al. 2009), so we might expect the actual value for P to be
somewhat greater than 0.02 in 2016.
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Fig. 2 Model validation. Time-series model results varying ¢ € [2,4.5] (colors) and ¢ € [0, 1] (patch
height) compared with prescription opioid death data from Hedegaard et al. (2017) (yellow circles). Note
that ¢ = 0 at the top of each color patch with ¢ increasing to 1 toward the bottom; this is illustrated in figure
for the € = 2 case (Color figure online)
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Fig. 3 Model validation. 2016 model results based on 1999 initial conditions for various € € [0, 8],
¢ € [0, 5], and different choices of « that match prescription opioid death data from Hedegaard et al.
(2017). Three specific cases where the addicted class matches the 2016 literature-estimated value for opioid
use disorder are highlighted (Color figure online)

3.1 Addiction-Free Equilibrium

Existence of an addiction-free equilibrium (AFE) is dependent on the condition that
o = 0 (in which case opioid prescriptions have ceased and the AFE is given by
P,A,R=0and S = 1),ory = 0and Sp = 0 (in which case P can be nonzero). With
the latter condition, addiction can only occur through the black market (represented
in our model by demand from current addicts). It also represents a special case of our
equations that describes an illicit prescription drug epidemic sub-model which would
be applicable to any epidemic where the drug in question is available by prescription,
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but prescribed users do not become addicted to their drug or contribute in a meaningful
way to its misuse because of its general availability on the black market. In all cases,
the AFE is given by

L__e+n

= A" =0,
a+e+u

pr=—% R* =0. )
a+e+u

Traditionally, the basic reproduction number denotes how many secondary infec-
tions result from one infected individual within a population. When Ry > 1, the
epidemic is expected to grow as more infections occur, while for Ry < 1 the number
of infected individuals declines. This remains consistent in the context of drug epi-
demics, where R can be understood to represent how many addictions there will be
in the next generation (year) compared to the current one. Assuming that y = 0 and
Bp = 0, Ry can be found using the next generation method (Diekmann et al. 1990,
2010; van den Driessche and Watmough 2002; Heffernan et al. 2005).

Remark 1 We mention here as a warning: The exact form of Ry one obtains from
the next generation method is dependent on whether or not certain classes are to
be considered “infected” when applying this method. In order to satisfy all of the
assumptions of the next generation method as described in (van den Driessche and
Watmough 2002), with no further assumptions on parameters (besides positivity) than
y = Bp = 0, one must take both A and R as “infected” classes with all others
considered as “not infected.” Biologically then, one should consider that those in
recovery are still infected by addiction in some way, with the potential to fall back
into full blown addiction on their own. However, they do not contribute to secondary
cases. Ry is then the ratio of new cases (caused by A) to the current number of cases,
A+ R.

In this case,
. Bale + 1) _ BaS”
T arer M@+ wrHA
where A = St u , S = ctu .
d+p+o ate+pu
A derivation of this result is given in Appendix A.3 and is consistent with spectral
analysis. For parameter values estimated in Table 1, Ro &~ 0.025 < 1, and so in the
absence of prescription-based primary and secondary addictions, we strongly expect
the opioid epidemic to die out on its own. This result provides explicit mathematical
backing to the idea that prescription opioid addiction is primarily caused by medical
prescriptions and over prescribing.

Another potentially surprising result of this calculation for Ry is that increasing
«a, the rate at which opioids are prescribed to the general population, actually reduces
Ro and can thus act as a control on the epidemic. This behavior is a result of the
AFE-required assumptions that Sp = 0 and y = 0 (when « > 0): If no prescribed
users can become addicted to their drugs and their prescriptions do not cause other

(6)
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people to become addicted either, then the prescribed class effectively becomes a safe
haven from opioid addiction. If this is altered by adding a 4 P A pathway moving
prescribed users to the addicted class based on the number of addicted (e.g., from
prescribed users taking illicit drugs), then Eq. 6 changes so that only S84 is left in
the numerator. For expected parameter values, Rg still remains close to its original
value. In general, we have left this pathway out of our first model for prescription
opioid dynamics because it is of higher order in comparison with y P, and since pre-
scription opioids always contribute something to their users’ eventual dependency,
it is difficult to parse primary cause between prescription-based usage and black
market-based usage—especially when a prescription makes acquiring opioids eas-
ier. In the hypothetical case that y = 0, one would need to examine the specifics
of how y = 0 was accomplished and what the implications are for prescribed users
who may have a source of opioids on the black market before modeling the dynam-
ics.

Comparison of Eq. 6 for our y = Bp = 0 sub-model to the form of R found
by White and Comiskey (2007) (Eq. 7) in their model of a non-prescription, heroin
epidemic, the contribution of the linear relapse rate o R and the addition of the P
class to the dynamics become immediately apparent. Specifically, in our equation for
Ro, o represents the contribution of the P-class to the dynamics, while o represents
the contribution of the R-class via the linear relapse rate. Removing these pieces by
settinge = 0 = y = Bp = 0, or by setting 0 = y = Bp = 0 and adding a
Ba P A pathway from P to A (so that P is essentially a second class of §), the AFE
sub-model reduces to the model of (White and Comiskey 2007), giving us Ro =
Ro,wc-

(N

R =
OWe =iy

Following the method described by Castillo-Chavez and Song (2004) with 84 as the
bifurcation parameter when Ro = 1, we can show that a backward bifurcation cannot
occur in our model as described by Eqs. (1)—(4); the reader is directed to Appendix
A 4 for details. However, if we expand our model with a nonlinear relapse term v, RA,
then a backward bifurcation becomes possible.

Consider the following system of equations with additional relapse terms v R P
and 1, RA,

S=—aS—BaSA—BpSP +€eP 48R+ u(P+R)+u*A (8)
P=aS—(e+y+unP 9)
A=yP+0R~+BaSA+BpSP+viRP +»RA— (C+uHA  (10)
R=CA—B+0+uR—vRP—1nRA. (11)

It is worth noting that this model is now a direct extension of White and Comiskey
(2007) as we use a nonlinear relapse rate of the same form. Calculating the basic
reproduction number R using the next generation method, we arrive at
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Bale + ) BaS*
RO,ext= ~ = ~
(e +e+w)(n*+8A) p*+¢A
~ 1)
where A = TH , *ZG—F—/L’
S+ u+o+v P* a+e+u

so the addition of v R P contributes to Ry in a way similar to o (but scaled by P*),
while the addition of v, RA does not contribute to R¢. The condition for existence of
a backward bifurcation is now

ATvy > (1 + DY(u* + A+ AT P*uy) (12)

where

¢

I= .
§+u+o+v P*

Practically speaking, this implies that when Eq. 12 is satisfied, a positive, stable,
endemic equilibrium exists simultaneously with the stable AFE, raising the possibility
that additional effort beyond achieving Rg < 1 may be required to eliminate addiction.
Itis interesting to note that the possible existence of a backward bifurcation is primarily
driven by vy; however, for parameter values that we estimate to be realistic (see Table
1), such a bifurcation is unlikely to occur. While it is feasible within our numerical
analysis parameter ranges, it requires minimal values for the parameters in Eq. 12
other than v, especially ¢. Of course, for the model given in Egs. (1)—(4) where v
functionally equals zero, it is not possible for a backward bifurcation to occur. With
that said, our suggested parameter ranges are only estimates, and it remains a distinct
possibility that a backward bifurcation occurs within biologically feasible parameter
scenarios. However, we do not wish to overly dwell on analysis of the AFE in this
paper as y = Bp = 0 remains an unlikely special case of the model, and therefore,
we leave exploration of a backward bifurcation for the future study.

3.2 Endemic Equilibrium

Theorem 1 Forthe systeminEqs. (1)—(4)with S+P+A+R = 1; u, u*, Ba > 0, and
all other parameters nonnegative, there exists an equilibrium solution in the closed
hypercube {0 < S, P, A, R < 1} given by

_ Ba+(I4+O)K+yOU+1) = (Ba+(1+O)K+yO(1+1)2+4K (BpO(1+ 1) —p4(1+6))
a 2(Ba(1+0)—BpO(1+1))

S*

a1 +0)—ppOA+T) #0o0r

K
C Pa+(U+OK +yO(+1)

S*
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otherwise, with

1—(1+6)S*
P* = OS5, A*:L, R* =T A*
14+ I
)
:l’ FZ;’ QZL’ K =CA+u*
§+o+up S§+o+up ety +u

Furthermore, if there exist both an addiction-free equilibrium (AFE) and an endemic
(non-AFE) equilibrium in the hypercube, the equations above yield the AFE only
when it is stable, and otherwise yield the endemic equilibrium. There are never more
than two coexistent equilibrium solutions, and there is never more than one endemic
solution in the interior of the hypercube. In particular, if y = Bp = 0 or « = 0 then
the AFE always exists, and an unique, interior, endemic equilibrium exists if and only
ifRo > 1.

Proof Setting Egs. (1)-(4) equal to zero, Egs. (2) and (4) quickly give us the given
expressions for P* and R*, and using these expressions together with S+P+A+R =
1 gives us A*. Combining the equations for P* and R* with Eq. (1) and setting equal
to zero, we have

0=A(BaS—K)+OS(y + BpS). (13)

If « =0, then ® = 0, and we have the AFE P, A, R = 0 and § = 1. Additionally,
given that 84 > 0, we have an endemic equilibrium defined by S = K /B4 which will
lie in the unit hypercube by the equations for P*, A*, and R* if K /84 < 1 (in which
case, it is this equilibrium which is given by the statement of the theorem instead
of the AFE with $* = 1). Note that for the AFE with S = 1, Rp = B4/K so we
expect the AFE to be unstable precisely when the endemic equilibrium represented
by S = K /B4 crosses into the hypercube.

If y = Bp = O instead, then A = 0 yields the AFE described in Eq. (5) and there
is once again a second equilibrium defined by S = K /B4. Note that when y = 0,
the AFE has S = 1/(1 + ®) so Rg = B4/(K (1 + @)). It is easy to verify that when
Ro > 1, the theorem yields the S* = K /B4 equilibrium and when R < 1, it yields
the AFE §* = 1/(14 ®). One can also quickly verify thatif 0 < §* < 1/(1+©®) < 1
(= 1 when o = 0), 0 < A* < 1 and substituting the equation for A* into R*, one
can easily see that 0 < R* < 1 as well. The equation for P* implies that P* > 0
and S*(1 + ®) = S* 4+ P* < 1 implies that P* < 1 — §* < 1, which taken
together shows that 0 < §* < 1/(1 + ®) < 1 is a sufficient condition for the
corresponding equilibrium to lie in the closed hypercube. Finally, R > 1 implies that
K/Ba <1/(1+0) <1and0 < Ry < 1 implies that 0 < K/Ba < 1/(1 + O),
which in turn implies that the AFE is unstable whenever the endemic equilibrium is
inside the open unit hypercube and stable otherwise.

If @« # 0 and y, Bp are not both zero, using the relation for A* in Eq. (13) results
in a degree-two polynomial equation for S

0=K—Ba+0+O)K +yO(+T)S+ Ba(l+O)— BpO(1 + I'))S>.
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IfBa(l4+O)—BpO(1 4+ I') =0, it is easy to see that 0 < § < 1 (note that K > 0
for all parameter choices). Solving the quadratic equation yields the expression for
S* given in the statement of the theorem but with both a plus and minus before the
radical. The discriminant can be rewritten as

Ba— (1 +NK)Y +O1+ D4BpK+y(2Ba+2K(1+ O  yO(1+ )] >0,

so the roots are always real. Considering in turn cases where S4(1+®)—BpO(1+1")
is greater than zero and less than zero, it can easily be seen that S* with the negative
square root is positive in both cases. Similarly, $* with the positive square root is
negative if B4(1 + @) — BpO(1 + I') < 0. We now show that $*(1 + ®) < 1 for
the S* with the negative root.

First, in the case where S4(1 + @) — Bp®(1 + I') = 0 it is easy to see that the
relation holds. Now assume that 84 (1 + ®) — Bp® (1 + I') > 0. Isolating the radical
in §*, the inequality S*(1 + ®) < 1 is equivalent to the condition that

28p®O(1+ I
vz BEZEED L 1+ 0)K +y00+ 1)~ s (14)

Squaring both sides, numerous terms cancel and we are left with an expression that
can be reduced to

0=0BrO+T)—pa(1+0))(Br+y(l+0)).

We can see that this is true given our assumption, which shows that the magnitude
of the right-hand side of Eq. (14) is less than or equal to that of the left-hand side.
However, since the left-hand side is positive, the relation holds in all cases. Now,
assume that 84 (1 + ©®) — BpO (1 + I') < 0. Then, the inequality for S*(1 + ®) < 1
in Eq. (14) is reversed. Similarly as before, we can show that the magnitude of the
right-hand side is larger than the magnitude of the left by isolating the radical and
squaring both sides,

J = %+(1+@)K+y@(l+m—m

but then multiplying both sides by (1 + &), we can see that the interior of the absolute
value is positive by our assumption Sp® (1 4+ I') — Ba(1 + ®) > 0. So the relation
holds for all cases of B4 (1 4+ @) — BpO (1 + I'), and we have shown S*(14+©) < 1,
where S* takes the negative square root solution to the quadratic equation above, as
given in the statement of the theorem.

We have already shown that the condition S*(1 + ®) < 1 is sufficient for the
corresponding equilibrium to lie inside the closed unit hypercube, and we now note
that it is also a necessary condition, since otherwise A* < 0. As a result, if we consider
the positive square root version of S* for the case where it is positive (84 (1 + ®@) —
BpO(1 + I') > 0), we quickly get the same expression as in Eq. (14), but with the
inequality reversed. As a result, this equilibrium value is only feasible in the case of
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equality, e.g., whena = O or Bp = y = 0. In both cases, this equilibrium corresponds
to the AFE as found earlier in the proof, with the other equilibrium S* = K /B4 (as
given in the statement of the theorem) representing the endemic state. As this is
the only case in which there are simultaneously two feasible equilibrium solutions,
and we have already examined stability of the AFE in this case; this concludes the
proof. O

We note that stability of the AFE as described in the previous result is local in nature,
and any rigorous proof of global asymptotic stability would require further analysis.
Additionally, none of our analysis considers the stability (either local or global) of
the endemic equilibrium. However, our numerical results suggest that the endemic
equilibrium is always globally asymptotically stable when (1) it is feasible and (2) the
AFE is either unstable or does not exist (see Eq. 12 for a condition under which both
the AFE and endemic equilibrium may feasibly exist and be stable).

3.3 Numerical Sensitivity Analysis

To assess the overall 10-year sensitivity of the model to its parameters, we used
Saltelli’s extension of the Sobol sequence (Saltelli 2002; Saltelli et al. 2010) to vary
each parameter within a range about its estimated value. We then conducted Sobol
sensitivity analysis (Sobol 2001) on the resulting values of S, P, A, and R after 10
years. This is a variance-based sensitivity analysis that has become extremely popular
in recent years. One of its greatest strengths is the ability to efficiently calculate not
just first-order sensitivity of the parameters (that is, perturbations of one parameter
at a time), but also second-order (two at a time) and total-order (all combinations of
other parameters) indices Saltelli et al. (2010). An immediate consequence of this
functionality is that the presence of higher-order interactions can be inferred by com-
paring first-order sensitivity indices with total-order indices. If significant higher-order
interactions between the parameters are present, these results will be notably differ-
ent.

Initial conditions were chosen to reflect estimations of recent US population
fractions in each class around the year 2016: Py = 0.05 (Boudreau et al. 2009)
(some increase added for passage of time), Ag = 0.0062 (Hughes et al. 2016),
and Rp = 0.0003 (SAMHSA-CBHSQ 2016) resulting in So = 0.9435 so that
S+ P + A+ R = 1. Relative sensitivity of the parameters is seen in Fig. 4, where
longer bars of a given color denote higher sensitivity to that parameter. The reported
results for all sub-bars in this figure are within a 95% confidence interval of 0.0053.
For parameter sensitivity analysis with respect to the model’s AFE, see Appendix A.5.
To conduct this sensitivity analysis, we used the expanded version of the model given
in Eqn. (8)—(11) to illustrate the fact that the model is insensitive to choices of v and
vy compared to o; results without these nonlinear replase terms (as in the original
specification of the model, Egs. (1)—(4)) are the same, minus the two parameter bars
in the plot. Similarly, if the linear relapse rate o is set to zero and the nonlinear relapse
rates remain, the sensitivity results are similar with very low to no sensitivity to v;
and vy.

@ Springer



N. A. Battista et al.

First-order indices Total-order indices

Value Range

s | 2001 -S| 02-2

Ba| 0.0001-0.01

Br| 0.0001-0.01

0-1

.8-8

.00235-.0235

2-2

.0023-.023

*| .00365-.0365

0-1

V1 0-1

0.0 0.00 vy 0-1
aAPaBprb €y T uu oV aBaBrb €y Cuu oV,

Fig.4 Sensitivity of 10-year values for S, P, A, and R to model parameters using expanded Eqs. (8)—(11).
See Fig. 1 or Table 1 for parameter definitions. First-order indices do not take into account interactions with
other parameters, while total-order indices measure sensitivity through all higher-order interactions (Color
figure online)

3.4 Simulation Results Around Realistic Parameters

The parameters € (the rate at which prescribed persons complete their opioid prescrip-
tion(s)) and ¢ (the rate that addicts enter treatment) are difficult to parse out from data
so in the following results, we varied them in the space of €, ¢ € [0.8, 8.0] x [0.2, 2.0]
while simultaneously considering changes in one other parameter at a time: Bp, f4,
y, 8, and «. The combined results are shown in Fig. 5. Whenever unspecified by the
plot, all parameters were held constant as in Table 1.

The first row of Fig. 5 examines the effect of varying the addiction rate due to
opioids from excess prescriptions (8p) while holding B4 = 0.00094, which dictates
the rate of addiction due to black-market prescription opioids. The second row similarly
examines the effect of varying 84 while holding Sp constant. As suggested by Fig. 4,
model results do not appear to be sensitive to 84, and are only somewhat sensitive to
Bp compared to y, §, or . In every case, to minimize the number of opioid addicts
a high prescription completion rate and a high rate of entering treatment are required
(upper-right region of each subplot).

As Bp increases, there exists a higher addicted class for low values of € and ¢,
suggesting that leftover prescriptions could exacerbate the number of addicted in
certain circumstances—a scenario that was not apparent from the Sobol analysis in
Fig. 4 which was conducted within a larger feasibility space of all parameters rather
than the estimated values in Table 1. Even more striking, the third row of Fig. 5
suggests that for estimated parameters, the rate at which medically prescribed opi-
oid users become addicted (y) very significantly affects the number of addicted.
When y doubles from its assumed realistic value of 0.00744 to 0.015, the number
of addicts virtually doubles as well. Assuming that the treatment success rate & is
difficult to move, our numerical analysis strongly suggests that y and «, the pre-
scription addiction rate and the prescription rate, respectively, are the parameters to
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Additcted Population Fraction in 10 Years

Illicit (Excess)
Prescription
Addiction \ & &
Rate () \

0.0013 0.0026 0.0039 0.0078 0.0113
licit
(Purchased)
Prescription
Addiction A
Rate (B,)

0.00047 0.00094 0.0019 0.0038 0.0076

Prescription
Addiction Rate
)
0.001 0.005 0.0074 0.0155 0.0235
Treatment
Success Rate (0)
0.10 0.25 0.50 0.75 0.90
Prescription
Rate (@)
0.02 0.0875 0.15 0.175
N =
Prescription 1 A .0075
End Rate (&) 0.0005 0.0025 0.005 0.00

Fig. 5 Varying the illicit addiction rate due to excess prescriptions (S p ), addiction rate due to illicit pur-
chases (84), prescription addiction rate (y), treatment success rate (§), and prescription rate (). Color
maps illustrate the predicted 10-year addicted population fraction for prescription completion rates (¢) and
rehabilitation rates (¢) between [0.8,8.0] and [0.2,2.0], respectively, while varying the other parameters one
at a time (Color figure online)

focus on. This result strongly reinforces and extends the AFE finding that this epi-
demic is essentially driven by prescriptions and prescription-induced addictions, in
both the hypothetical case where the prescription addiction rate is low and around
realistic, data-estimated parameter values. It is also clear that even when the treatment
success rate § is low, or the prescription rates y and o are as expected or high, the
addicted population can be greatly reduced through a combination of a high rehab-
entry rate ¢ and a high rate of finishing opioid prescriptions and returning to the
S-class (¢).
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Treatment Success Rate (6)

0.10 0.20 0.35 0.5 0.65 0.80
. \\\ R
\\ NS

Rehab
Rate (§) Prescription
Completion Rate (&) OAO 0.0025 0. 005 0.0075 0.010

0.90

0.02

o
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Prescription Rate ()
e
&
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Fig.6 Varying the prescription rate («) and treatment success rate (§) in tandem with varying prescription
completion rates (¢) and rehabilitation rates (¢) between [0.8,8.0] and [0,1]. Color maps illustrate the
predicted 10-year addicted population percentage (Color figure online)

Finally, we explored the relationship between «, €, 8, and ¢ in detail, as these
parameters are most likely to be the target of control efforts. The results are seen
in Fig. 6. Even with current-level prescription rates (estimated to be o« ~ 0.15),
decreased addicted population percentages can be achieved with sufficient prescription
completion rates, rehabilitation initiation rates, and treatment success rates.

4 Discussion and Conclusion

In this paper, we present a first model for the opioid epidemic which utilizes the
successful mathematical epidemiology approach popularized by Kermack and McK-
endrick (1927) for the spread of infectious disease. Parameters are estimated from
the literature, and simulation results are compared with mortality data and estimates
for current population fractions of our given model compartments. Analysis of our
model shows that maintenance of an addiction-free population (the addiction-free
equilibrium, or AFE) requires at minimum the elimination of both patient prescription-
induced addiction (y = 0) as well as secondary, non-patient addictions attributable to
filled prescriptions (8p = 0). Parameter sensitivity analysis indicates that the first of
these is far more important, with near-AFE endemic states possible even if Bp is sig-
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nificantly greater than zero as long as y = 0 (see Fig. 7 in Appendix A.5). This result
strongly suggests that reducing the number of addictions among opioid-prescribed
patients is a critical first step in combating the crisis.

Even in the hypothetical case where both prescription-induced addiction and addic-
tion resulting from leftover prescription opioids are eliminated, the threat of ongoing,
endemic addiction persists due to illicit availability of these drugs. In this case, our
model reduces to an illicit drug addiction model except that prescribed opioid users
are considered safe from addiction since they are closely monitored to prevent addic-
tion to the drugs they are taking. Our calculation of the basic reproduction number,
Ro, then provides a metric by which we can determine whether overall addiction will
eventually die off or persist based upon model parameters.

A key result of our addiction-free equilibrium analysis using parameters estimated
from the literature is that we strongly expect R to be less than one (Ry & 0.025 for
estimated values), and thus, we expect that a black-market only prescription opioid
epidemic is not self-sustaining. This result provides mathematical backing to the con-
ventional wisdom that unlike previous drug epidemics, prescription opioid addiction
is essentially a by-product of primary and secondary addictions caused by medical
prescription and likely would not be self-sustaining absent these prescriptions.

Due to the form discovered for R in Eq. 6, the ratio of the addiction rate due to
black-market opioids (84) to the death rate of addicts (u*) appears to be critical. If
this ratio is less than one, the opioid epidemic is not self-sustaining without prescrip-
tion drugs no matter the prescription rate or addiction treatment rate. This precise
ratio B4/u1* may be somewhat artificial due to the recycling of overdosed persons
back into the susceptible class (done in order to maintain an overall static population
size), but the suggestion of a natural balance between a drug’s infectiousness and
potential for addiction verses its potential to be lethal is not far-fetched and could
merit further study to better understand addiction in the context of an infectious social
disease.

Given the difficulties of completely eradicating prescription-based addiction (y = 0
and Bp = 0), theidea of reaching an addiction-free state remains improbable. Relaxing
these assumptions, our numerical analysis suggests that control efforts should focus
on reducing the average prescription length (¢) and increasing the rate addicts enter
treatment (¢ ), even if treatment is often unsuccessful (Fig. 5), followed by decreasing
the number of prescriptions written (). Reducing both € and « could help naturally
decrease the rate of prescription-induced addiction, y. In one typical case where € =
3.0 and ¢ = 0.25, doubling the rate that users enter treatment to ¢ = 0.5, resulted in a
21% decrease in the addicted population after five years, despite the fact that treatment
success was held at 10%. If the treatment success rate also doubles to § = 0.2, the
addicted population decreases another 8.7% (or by 27.5% of where it was initially)
after five years.

Following this, we found that increasing the success rate of rehabilitation (6) should
also be a priority (Fig. 10 in Appendix A.6). The beneficial effect of decreasing overall
prescription lengths (via increasing €) is particularly pronounced when either the rate
of starting rehabilitation (¢) is low or the success rate of rehabilitation (§) is low,
regardless of the prescription rate (o). On the other hand, our model suggests that
neither the mode of relapse nor illicit opioids, whether from leftover prescriptions or

@ Springer



N. A. Battista et al.

demand-driven market, have much impact on the total fraction of addicted (Fig. 4 and
Fig. 7 in Appendix).

To simplify the dynamics for this first model, we neglected potential effects due
to gender, race, and geographical location. Additionally, our model did not attempt
to capture how prescription drug addicts may move to heroin or vice versa, leaving
this study to the future work. This dynamic has important ramifications for public
health as heroin use is associated with high rates of overdose, especially when laced
with fentanyl (Gladden et al. 2016; Peterson et al. 2016; O’Donnell et al. 2017), and
could be particularly lethal for users who have first built up an opioid tolerance and
then increase their doses on heroin (Muhuri Pradip et al. 2013). While many have
modeled the heroin epidemic previously (Stewart and Mackintosh 1979; White and
Comiskey 2007; Battista 2009; Nyabadza and Hove-Musekwa 2010; Huang and Liu
2013; Abdurahman et al. 2014), we are not aware of studies that incorporate effects
of fentanyl, methadone, and prescription opioids all together, or studies that explicitly
consider demographic effects. Our model is meant to provide a starting point for this
larger, more detailed work.

Another simplification we made for the presentation of this first model was the
implicit assumption that parameter values are constant with respect to time. This is
obviously not the case in for many of our parameters, in particular the prescription
initiation rate (o) (Pezalla et al. 2017), the prescription completion rate (¢) (Scully
et al. 2018), the rehabilitation initiation rate (¢), and the rehabilitation success rate
(8). Despite the large amount of public interest in prescription opioid addiction, we
found it quite difficult to obtain our ball-park estimates for many of the parameters, as
prescription and addiction statistics are often given in yearly aggregate numbers and
survey studies are not typically designed with the intent to parameterize mathematical
models. For other parameters such as 84, Bp, v1, and v, data are almost wholly absent
by nature; fortunately, our results suggest that the model is relatively insensitive to
these parameters. While beyond the scope of this particular study, we believe that a
rigorous, time-sensitive estimation of model parameters is an important next step and
represents a significant work on its own.

In summary, our main results confirm that necessary measures to combating the
opioid epidemic include lowering the number and duration of medically prescribed
painkillers, more successful treatment regimens, and increasing the availability, ease,
and motivation for opioid addicts to enter treatment (Watkins et al. 2017). Our findings
also provide a direct measure of the epidemic’s sensitivity to each of these efforts which
may be useful in allocating available resources, especially for small rural towns, cities,
or states combating the epidemic. Better estimates of model parameters from data
could prove crucial in developing management strategies and refining our modeling
approaches—given the role of non-prescription opioids such as heroin and fentanyl to
the overall epidemic and the unique effects of geography and population demography,
we believe that the model presented here represents only the beginning in a larger
mathematical exploration of opioid addiction dynamics.
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Appendix A

Here, we present supplemental material to support our findings including additional
model analysis and validation, numerical stability analysis, and simulation data. We
also provide details for the calculation determining a condition for backward bifur-
cation, the explicit Jacobian used in our stability analysis, and simulation results
illustrating system sensitivity to the prescription addiction rate (y), treatment suc-
cess rate (), and prescription rate (o). Finally, we explore the relationship between
prescription rate («) and prescription addiction rate (y).

A.1 Initial Conditions for Validation

We estimated the initial prescribed population, Py, based off of the percentage of
US population to whom were prescribed opioids at any given week in 2009 (2%)
(Boudreau et al. 2009). Since there were more prescriptions given in 2009 than 1999
(Shah et al. 2017), we estimated that roughly 0.40 x 2% of the population were
prescribed opioids at any time in 1999; hence, Py = 0.008. Note we estimated the
coefficient of 0.40 by using the ratio of total opioids MME sold in 1999 to 2009 (U.S.
Food and Drug Administration 2018).

We backed out the initial addicted population from the number of prescription opioid
deaths in 1999 (2749) (Hedegaard et al. 2017), and normalized it by the fraction of
deaths attributed to addicted persons (54.6%) (Gwira Baumblatt et al. 2014) and the
predicted number of deaths from our model with the age-adjusted US population in
1999 (259 x 10°) (U.S. Census Bureau: International Database 2018), e.g., Ap =
(25((9)%% = 0.00136. We then assumed Ry = 0.1A¢ (Office of the Surgeon
General 2016) (fraction of population in treatment), making Sop = 0.990504.

A.2 Analysis of the Addiction-Free Equilibrium

Here, we derive conditions on the existence of an addiction-free equilibrium (AFE)
within the system defined by Eqs. 1-4. To begin, we set each equation to zero and
require that A = 0. Equation 3 becomes 0 = —(§ + o + ©)R, and since u > 0 as
a natural death rate, this implies that R = 0 at any AFE (conversely, R = 0 requires
that either A = 0 or ¢ = 0, which may apply at the beginning of an epidemic). We
are left with the system

0=—aS" — BpS*P*+eP*+ puP*
O=aS*—(e+y+pnP*
0= P*(y +BpS").
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P* # 0 since otherwise the only solution is $* = P* = A* = R* = 0 and we
require that S + P + A+ R = 1. Then, 0 = y + BpS. Since all our parameters and
dependent variables are nonnegative by definition, y = fp = 0. In this case, opioids
are available only through the presence of current addicts (e.g., on the black market
due to illicit demand) and not through currently prescribed users. We can now use our
assumption that 1 = S + P + A + R to find that

€+ u

= A*=0
a+e+u

. — R¥=0
a+e+

A.3 Calculating the Basic Reproduction Number, Ry

Assuming that y = Bp = 0, the necessary and sufficient conditions for the AFE to
exist, Eqs. 3 and 4 reduce to

A=0R+ BaSA— (L +uHA
R=CA— @ +0+wR.
Using the next generation method (Diekmann et al. 1990; van den Driessche and

Watmough 2002; Heffernan et al. 2005; Diekmann et al. 2010) with both A and R
treated as “infected,” we compute the matrices F and V as

Balet+p) 0 c +M* -
F=| atern d V= .
[ 0 o} o [ - 8+o+u]

Then, Ry is given by the spectral radius of FV !,

Ro— Bale + 1) _ pas”

T aret @A) wr A
8

where A = tH S* = il

S+u+o’ " adet+u’
Prevalence of opioid addicts will rise when Ry > 1 and fall when Ry < 1.
A.4 Jacobian Analysis and Alternative Relapse Models

Consider an alternative form of the model with the addition of two relapse rates v S P
and 1L, SA,

S=—aS—BsSA—BpSP +€P +3R+u(P+R) +u*A
P=aS—(e+y+uP
A=yP+0R~+BaSA+BpSP+viRP+»RA— (L +uHA
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R=C(A—(+0+4u)R—vRP —nRA.

The AFE for this system remains the same (with the same conditions for existence)
as in Eq. 5. Calculating the basic reproduction number R using the next generation
method, we arrive at

o= Bale + 1) _ Bas”
(@+e+w(u*+¢A) p+¢A
where Z: §+n , *:E—i_—'u'7
S+ u+o+v P* a+e+pn

so the addition of v{ R P contributes to Ry in a way similar to o (but scaled by P*),
while the addition of v» RA does not contribute to Rg. We will now conduct further
analysis on this model which, as a direct extension of our model given in Egs. (1)-(4),
will include it as a subcase.

Reducing the system to three equations for S, A, Rusing P = 1 — S5 — A — R gives
us

S=—aS—BsSA—BpS(1—S—A—R)
+E+w1—-—S—A-R +@E+mwR+u*A

A=y(1—S—A—R)+0R+ BsSA
+BpS(1—S—A—R)+vR1—S—A—R) +VvRA— (L +pu"HA

R=CA—vR(1—-—S—A—R)—nRA—(5+0+ R, (15)

The Jacobian, J, of this system is
—a—BaA+Bp(S — P)—(e + 1) (Bp — Ba)S—(e + w)+u* BpS+s—e

—Y+BaA+Bp(P —S)—viR  —y+(Ba — Bp)S—ViR+1R — ( +u*) —y +o —BpS+vi(P — R)+1nA

VIR +viR—»R —Vi(P—R)—vA—-B+o+pn

Evaluated at the AFE given by Eq. 5 with y = p = 0, the Jacobian J (xp) is

—(a+e+pn) —BaS*—(e+nun) +u* §—e
0 BaS* — (& +u") viP* 4o
0 e VP —B+o+pwp

Following Castillo-Chavez and Song (2004), we now take 4 to be the bifurcation
parameter (given the form of Ry) and conduct analysis around

_M*+§/T

pr=t0

to analyze the bifurcation of this system when Ry = 1 and determine the bifurcation’s
direction (Castillo-Chavez and Song 2004). First, we define the matrix A as in Castillo-

Chavez and Song (2004) but, via a change in coordinates, taking x¢ to be the AFE
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Fig. 7 Model sensitivity to  and Bp. Effect of moving y and/or Bp away from zero when Ry =~ 0.085
with likely parameter values, € = 3 and ¢ = 0.25 (Color figure online)

and the bifurcation parameter to be 4. Writing our system of differential equations
(including nonlinear relapse terms) as dx/dt = f(x, f4), we have

d fi * *
A= a—f(xo,ﬂA = By) = J(x0, Ba = By)
Xj
—(a+€e+p) —CZ: (e + 1) S—e¢ (16)
= 0 (A -=1) o+ v P*
0 e —@B+o+viP* +p)

It is easy to check that zero is a simple eigenvalue of A and that all other eigenvalues
of A have negative real parts. A has right eigenvector x = (=S*(1+ 1), 1, M7 and
left eigenvectory = (0, 1, 1 — A) where I" is given by

F= ‘
S+u+o+v P*
and once again
~ 8
A= T

S+ 4o+ v P

The first component of X is negative, but since S* > 0 the analysis still applies
(Castillo-Chavez and Song 2004). We now let fj be the kth component of f and set

a= Y i~ T o B = )
A / 8xl- 0x;
k,i,j=1 J
3 fi
b= E i .
k i=1ykxz 0xi9fa
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Total-order indices
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Fig. 8 Sobol sensitivity analysis for equilibrium values when y = Bp = 0 (see Fig. 1 or Table 1 for
parameter definitions). The first-order indices do not take into account interactions with other parameters,
while total-order indices measure sensitivity through all higher-order interactions. The parameter ranges
tested here are the same as in Fig. 4 (Color figure online)
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0.015

Fig.9 Prescription addiction rate color maps illustrating the long-term equilibrium solutions (S*, P*, R*,
and A*) for prescription-end rates (¢) and rehabilitation-start rates (¢) between [0.8, 8] and [0.2, 2.0],
respectively, and for various prescription addiction rates (y) (Color figure online)
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Fig. 10 Treatment success rate color maps illustrating the long-term equilibrium solutions (S*, P*, R*,
and A*) for prescription-end rates (¢) and rehabilitation-start rates (¢) between [0.8, 8] and [0.2, 2.0],
respectively, and for various treatment success rates (§) (Color figure online)
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3% fi _ g
3AdBA
Pho_ g
9ADfA

Now,

a= (=81 + NP+ M=+ IM)B;
+ (D(=S*(A+ D)) (=v) + (DT (=S*(1+ T))(=v1)
+ (M) (=vy) + (D)D) (=vy) + (D) (—2vy)
+ (1= D)(=S*(1+ D)) ) + (1 = D) (=S*(1 + T))(v)
+ (1= DM ) + (1= D)D) + (1 = DH(TH2w)
+ (DT vy + (D Wy + (1 — A (DT (=) + (1 — DI (1) (—w)
= 28*(1+ I)B% —2AT (1 + ") P*vy +2AT v,
=200+ D)W + A+ AT P*v) +2AT v,
b= (1)(1)S* > 0.

To make a > 0, we therefore need
ATvy > (1 4+ D) (W  + A+ AT P*v)). (17)

If this condition is satisfied, there will be a backward bifurcation at Ry = 1. Of course,
for the model given in Eqgs. (1)—(4) where v, functionally equals zero, it is not possible
for a backward bifurcation to occur.

A.5 Addiction-Free Equilibrium Numerical Analysis

To examine the sensitivity of the model’s addiction-free equilibrium (AFE) to its
parameters, we first ran simulations to see how the AFE changes when either y or Sp
shifts away from zero. Parameter values were chosen as in Table 1 with ¢ = 3 and
¢ = 0.25. Our results show that for our estimated parameters resulting in Ry ~ 0.022,
shifting S p away from zero has little noticeable effect, while shifting y away from zero
strongly moves the equilibrium away from the addiction-free state (see Fig. 7). This
suggests that in a nearly addiction-free population, prescription-induced addiction
remains far more important than securing prescriptions away from non-prescribed
users. Note that in the exact case of an AFE, it is always stable when y = p = 0 for
a parameter space centered around the other parameters listed in Table 1.

Further analysis of the model parameter space when y = fp = 0 was conducted
using the Sobol method (Sobol 2001). We chose N = 800,000 and generated N (2D +
2) parameter sets (where D = 9 is the dimension of the parameter space) via Saltelli’s
extension of the Sobol sequence (Saltelli 2002; Saltelli et al. 2010) for a total of 16
million samples. We then ran the model to 10,000 years for each set of parameters to
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Fig. 11 Prescription rate color maps illustrating the long-term equilibrium solutions (S*, P*, R*, and A*)
for prescription-end rates (¢) and rehabilitation-start rates (¢) between [0.8, 8] and [0.2, 2.0], respectively,
and for various prescription rates («) (Color figure online)

arrive at an equilibrium. We subsequently conducted Sobol analysis (Sobol 2001) on
the values for S, P, A, and R after the final year. Initial conditions for each simulation
were S(0) = 0.9435, P(0) = 0.05, A(0) = 0.0062, and R(0) = 0.0003 (Fig. 8).

A.6: Further Numerical Exploration of Parameter Space

In this section, we expand our parameter space exploration for {e, ¢} € [0.8, 8.0] x
[0.2, 2.0] by examining parameter sensitivity for each of S, P, A, and R instead of
only the addicted class. More specifically, we examine the associated effects of € and
¢ on the predicted populations for 10 years into the future for each of the following
cases:

1. Prescription Addiction Rate (y),

2. Treatment Success Rate (8),

3. Prescription Rate (),

4. Prescription Rate vs. Prescription-Induced Addiction (« vs. y).

Figures 5 and 9 show that as y increases the addicted population grows. In particular,
if y doubles from its estimated value, there exists (e, ¢) for which 2% of the population
becomes addicted to opioids, which is approximately three times the number of addicts

@ Springer



Modeling the Prescription Opioid Epidemic

Prescription Addiction Rate (y)
0.00235 0.0035 0.005 0.0074 0.01 0.0155 0.0235

0.02

o
o

Prescription Rate (@)
=
wn

0.175

0.2 o8 \\

Rehab
Rate (§) Prescription

Completion Rate (&)

0. 001 0.00375 0. 0075 0.01125 0 015

Fig. 12 Prescription-induced addiction vs. prescription completion. color maps illustrating the long-term
equilibrium solutions (§*, P*, R*, and A*) for prescription rates («) and rehabilitation rates (¢) between
0 and 1 and for various rates of prescription-induced addiction (y) and rates of finishing prescriptions (€)
(Color figure online)

in 2016. Moreover, as y increases, so does the rehabilitation class. Interestingly, for
values of (¢, ¢) that make the addicted class roughly 2% of the population, the rehabil-
itation class makes up approximately 1%. On the other hand, when the rehabilitation
class composes roughly 1.5% of the population, the addicted class makes up roughly
the same percentage. When § increases the rehabilitation class, population decreases
near zero. The population of the addicted class decreases toward zero as well, while the
populations of the susceptible class and prescribed class appear unaffected (Fig. 10).

Figure 11 shows that if the prescription rate « is small enough, the entire popu-
lation almost remains in the susceptible class. However, for certain values of (e, ¢)
roughly 0.5% of the population can still remain in the addicted population. Moreover,
for all cases of o and small ¢, the rehabilitation class’ population remains near zero
for almost all values of €.

Finally, we explore the relationship between prescription-induced addiction () and
completing the prescription and heading back into the susceptible class (¢). Situations
in which these two parameters do not add to one could be used to model long- or short-
term opioid prescription use. The data are presented in Fig. 12. It is clear that a decrease
in € corresponds to an increase in the number of addicts as might be expected for more
chronic opioid prescription use. For large y, those differences are more subtle, as
increasing y leads to a profound escalation in the addicted population regardless of .
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